


Department of Aeronautics and Astronautics
Stanford University
Stanford, California

PRECISION MAGNETIC ATTITUDE CONTROL OF SPINNING SPACECRAFT

by

John A. Sorensen

SUDAAR No. 380

August 1969

This work was performed in association with research sponsored
by the National Aeronautics and Space Administration
under Research Grant NSR 05 020 379






ABSTRACT

This dissertation presents a study of the precision magnetic atti-
tude control of rigid, earth orbiting spacecraft which are nominally spin-
ning about their maximum axes of inertia. Specifically, control systems
for accurately pointing the satellites' spin axes and maintaining nearly
constant spin speed are investigated. The effects of environmental dis-
_turbances and incorrect vehicle parameters upon obtainable pointing ac-
curacies are evaluated.

The first control system studied is for axisymmetric vehicles operat-
ing in highly eccentric orbits, each with its spin axis constrained to
point normal to the orbit plane. One applicationof this type of spacecraft
and orbit configuration is to measure the unknown tesserai harmonic coef-
ficients of the earth's gravitational potential; an analysis of the selec-
tion of orbital elements for this purpose is included. Next, the Kalman
filtering of horizon=-sensor measurements of roll error is shown to provide
an effective means of lowering the overall attitude error of the satellite.
An algebraic solution of the quadratic matrix equation governing the mini-
mum power controller is derived and used to generate a pointing control
law suitable for the spacecraft with or without a nutation damper. It is
shown that this control law can be mechanized magnetically by either
three orthogonal coils or a single coil skewed 45° to the spin axis.

Spin speed control is simultaneously provided by incorporation of a unique
three-mode logic into the mechanization.

Another magnetic attitude control system investigated points the
spin axis of a spacecraft precisely at a star. The vehicle considered
has a circular, polar orbit, and attitude error measurements are made by
means of an optical star tracker. A reduced-order observer is developed
to estimate disturbance torques acting upon the spacecraft and these
estimates are utilized to cancel the torques' effect. Performance evalu-
ation of this magnetic controller indicates that it compares quite favor-
ably with other precision control devices.

Finally, a method is developed for synthesizing continuous attitude
control laws for nonsymmetric spinning vehicles. This technique allows
the designer to provide arbitrary dynamic response to the vehicle and

has direct application to magnetic attitude control.
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CHAPTER 1

INTRODUCTION

PURPOSE OF THIS RESEARCH

The spacecraft which is spin-stabilized about its maximum axis of
inertia is widely used for earth orbital applications because of its in-
herent ability to hold a fixed spin-axis orientation. The special pur-
pose of this satellite may require that the spin axis be held to within
minute tolerances of the desired attitude. For precision orientation, an
active attitude control system is usually incorporated as an integral
part of the vehicle. This control system also sustains the spacecraft
spin speed.

The degree of accuracy to which a spin axis can be pointed is highly
dependent upon the vehicle and its orbit. This research studies the de-
sign and analysis of continuous precision attitude control systems for
satellites requiring that the spin axis be pointed normal to the orbit
plane or toward a star. Specific examples of such spacecraft include two
applications of the drag-free satellite.

In particular, magnetic actuation of the attitude control system for
the above two applications is investigated. This control is achieved by
producing a maghetic moment on the spacecraft which ihteracts with the
earth's magnetic field to create a torque. Magnetic controllers have the
advantages of requiring low power, having no moving parts or serious life-
time limitations, and being lightweight. A épecific disadvantage is
that they produce very weak torques. However, for the particular appli-
cations studied here, even a weak magnetic torque is sufficient for off-
setting the effects of environmental disturbances. A more relevant dis-
advantage of magnetic control is that the local magnitude of the earth's
magnetic field is time varying and rarely in the desired direction for
achieving continuous pointing and spin control. Thus, basic questions
arise concerning the achievable accuracies, dynamic response, and stability
of such control systems. It is these areas with which this research is
directly concerned.

In designing a control system for removal of small attitude error,



it is convenient if the spacecraft has mass symmetry about its spin axis,
because this produces linear, constant-coefficient equations of motion.
No foreseen difficulty precludes attempting to build the satellite this
way, so it is usually assumed in the following development that axial
mass symmetry or near symmetry exists. The subject of control synthesis

for nonsymmetric spinning vehicles is treated in the last chapter.

PREVIOUS STUDIES OF MAGNETIC AND OTHER PRECISION ATTITUDE
CONTROL SYSTEMS FOR SPINNING SPACECRAFT ‘

Magnetic attitude control was first suggested around 1960 (see Kamm,
Ref. 1, and White, et al., Ref. 2) and was primarily directed toward con-
trol of nonspinning spacecraft about two axes. Several investigations
have followed of applications to both spin-stabilized and three-axis
attitude control requirements. Configurations studied have varied from
single permanent magnets to three orthogonal coils used in conjunction
with reaction wheels or control-moment gyros. References 3-8 represent
studies of systems where magnetic torquing is used for control of non-
spinning spacecraft, as a means of damping vehicle rates, or for unload-
ing reaction wheels or control-moment gyros. Of particular interest is
the paper by Paiken and Fleisig (Ref. 7) cohcerning the fine, three-axis
momentum control of the Orbiting Astronautical Observatory (OAO) by use
of inertia wheels which are unloaded using electromagnetic coils. This
spacecraft is designed to achieve +0.1 arc sec. pointing accuracies and
is now operational. Both Sonnabend (Ref. 9) and Arnesen (Ref. 10) studied
versions of dual-spin spacecraft in which magnetic coils on the despun
part were used to complement the reaction -wheel function of the spinning
portion.

Extensive studies have been made of using a single magnetic dipole
aligned with the spin axis as a possib{g means of attitude control of a
rigid spinning spacecraft. Both Ergin and Wheeler (Ref. 11) and Mobley
(Ref. 12) discussed specific applications of this configuration for
keeping the spin axis normal to the orbit plane. Wheeler (Ref. 13) and
Renard (Ref. 14) investigated further applications of the single coil

controller to general purpose satellites in circular orbits.



Vrablik, et al. (Ref. 15), discussed using electromagnetic coils
with axes perpendicular to the spin axis of the Lincoln Experimental
Satellite (LES) 4 for maintaining the spin axis nearly normal to the
orbit plane. This spacecraft operates in a circular, near-synchronous
equatorial orbit and controls the spin axis to point to within 2.6° of
the orbit normal. Fischell (Ref. 16) recognized that magnetic control
could be used for regulating the spin speed of the satellite. The per-
formance of this method was elaborated upon by Mobley, et al. (Ref. 17)
for the DME-A satellite.

Successful uses of magnetic attitude control systems for spinning
spacecraft are also represented by the Tiros satellite program (Ref. 18)
and several of the APL satellites (Ref. 19). In all, a wealth of infor-
mation appears in the literature on simple, practical applications of
magnetic control technique.

Much of the previous work could be directly applied to the design of
a control system for maintaining the spin axis of a satellite normal to
the orbit plane. However, basic questions remain to be answered when
the orbit is highly eccentric and the only attitude error measurements
considered are those from horizon sensors. The desire for a new look at
the control requirements of this mission provides the motivation for
Chapter III.

The high~accuracy attitude control of spacecraft for space astronomy
has been previously studied with requirements for three-axes control.
Both Fosth and Zimmerman (Ref. 20) and Liska (Ref. 21) investigated sys-
tems for achieving pointihg accuracies as fine as 0.01 arc second (equiva-
lent to pointing a telescope at é human hair one mile away) for periods of
up to an hour. Further requirements of these systems are that the satel-
lite be able to maneuver several degrees within a few minutes of time for
application on the Manned Orbiting Telescope., Their basic conclusion,
which is summarized in Figure 1.1, is that the control-moment gyro repre-
sents the logical choice for achieving such high precision.

Conspicuously missing from Figure 1.1 is the precision available
from magnetic control. As will be seen, if the requirements of holding

high accuracies for up to one hour are somewhat relaxed and no rapid



maneuvering is required, magnetic control compares favorably with the

control-moment gyro.
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FIG. 1.1. ACHIEVABLE POINTING ACCURACIES OF
NON-MAGNETIC CONTROL SYSTEMS.

OUTLINE OF NEW RESULTS AND CONTRIBUTIONS

In Chapter 1I, the attitude equations of motion of the rigid spin-
ning spacecraft studied in this research are presented. Next, suitable
orbits are selected for two different satellites which serve as interest-
ing examples of systems requiring precision attitude control. From the
orbit and spacecraft characteristics, the time history of various environ-
mental disturbance torques is determined for later use in‘evaluating the
investigated control systems.

The application of one of the satellites selected for study--the
drag—-free geodesy satellite—;is to provide the means for measuring the
unknown tesseral harmonic coefficients of the earth's gravitational po-
tential. It is theoretically established that tracking four distinct
eccentric orbits of this geodesy satellite can produce most of the unknown
coefficients through degree and order 15.

In Chapter III, a technique for magnetically controlling the spin
axis of a symmetric geodesy satellite to point nearly normal to the
orbit plane is presented. This control method is applicable to satel-
lites in near-earth orbits with inclinations between 20° and 70° and
eccentricities of up to 0.7. The technique involves employing a Kalman

filter to determine yaw error and vehicle angular rates from horizon-



sensor measurements of the roll error. Orientation and spin control are
mechanized in a unique three-mode logic based upon magnitude of spin-
speed variation. Computer simulations are used to demonstrate that this
attitude control system outperforms magnetic controllers studied previ-
ously from the standpoints of faster transient response and ability to
withstand disturbance torques. Additional contributions resulting from
the development of this chapter include the following:

1. A systematic method for obtaiﬁing the algebraic solution to the
quadratic matrix equations governing the optimal control of a
general system possessing complex symmetry is developed. This
method is utilized to determine the minimum-power optimal con-
trol gains and associated control law for the spinning spacecraft.

2. A new mechanization scheme consisting of a single coil skewed at
45° to the spin axis used in conjunction with a passive wobble
damper is shown to be effective for three-degree-~of—~freedom at-
titude control,

3. Because of the time~varying magnetic field, the control system
has fluctuating gains resulting in questionable attitude stability.
A new method for generating Lyapunov functions is adapted to
establish the bounds on the damping required for guaranteeing
that the vehicle is asymptotically stable.

In Chapter IV, an all-magnetic attitude control system is investi-
gated for precisely pointing the spin axis of a symmetric satellite at a
star while maintaining spin speed. It is demonstrated that, theoretically,
the pointing error can be kept within 0.01 arc second of the reference
for more than 90 per cent of the'period of a polar orbit. An error
analysis is performed to determine the deviation of an actual system's
performance from that of the ideal. Other contributions in Chapter IV
include the following:

1. An extension of the Gopinath reduced-order observer for noncyclic,

noncontrollable systems is made.

2. It is shown that inertially-fixed and body-fixed disturbance
torques acting on the satellite are mathematically observable

quantities and can thus be effectively cancelled by a propor-



tional signal being incorporated into the control law. In ad~-
dition, it is demonstrated that the pulse disturbance torques
due to misaligned translational control jets can be estimated
and magnetically cancelled.

Finally, in Chapter V, a new method of generating a continuous con-
trol law for nonsymmetric vehicles is developed by extending a method
used for symmetric vehicles., The resulting control law allows the de~
signer to provide the system with arbitrary dynamic response. This
method can be directly applied to problems of magnetically controlling

the attitude of nonsymmetric spinning satellites.



CHAPTER I1

FEQUATIONS OF MOTION AND ORBIT-~DEPENDENT DISTURBANCE TORQUES

The purpose of this chapter is to define explicitly the mathematical
dynamic models of the satellite systems and their environments with whicé
the rest of the research is concerned. These models are formulated in
such a way that the characteristics of the satellite and environment
(which determine the degree of accuracy obtainable and the type of mag-
netic attitude control required) are evident.

Attitude control is defined as maintaining the satellite in a given
orientation with respect to a reference frame fixed in inertial space.

In the cases studied here, the desired orientation consists of directing
the spin axis of the satellite toward a fixed point on the celestial
sphere or aligning it parallel to some instantaneous axis defined in

space. Correct orientation is also defined to include the maintenance

of thé satellite spin speed within some required bounds of a nominal value.

The question of attitude control accuracy--i.e., how far and for how
long does the actual vehicle orientation vary from the desired orientation--
cannot be answered in general. Any meaningful answer is highly orbit de-
pendent, and to answer the question specifically depends directly upon
how much information one knows about the satellite. What types of sen-
sors are available, what degree of electronic sophistication is accept-
able, and what type of disturbance environment will be encountered--all
must be considered.

With the above in mind, this research is concerned with two quite
different attitude control problems. The first requires that the space-
craft spin axis be maintained almost normal to the orbit plane. Horizon
sensors mounted on the spacecraft produce roll-error information for the
attitude control system. The controller's function is to maintain both
the pointing error and spin-speed error within the required tolerances.

The second application is one in which the spin axis of the vehicle
is required to point at a star. A star tracker is the primary orientation-
error sensor, and it is assumed that this device gives very accurate two-

axes cartesian measurements of the spin-axis angular deviation. The at-



titude control system's job is to keep this deviation as small as possible
during each orbital period while holding the spin speed within an accept-
able tolerance of the nominal value.

It is assumed that both types of satellites have surfaces with the
geometrical shape of a right circular cylinder for purposes of describing
the atmospheric and radiation pressure torques. In addition, it is as-
sumed that the vehicles are nominally spinning about their maximum axes of
inertia and are built with near inertial symmetry about their spin axes.

The continuous attitude control of a nonsymmetric spinning vehicle
is also studied, in which case it is assumed that the control axes (axes
about which the control moments are applied) are the principal axes.

Having briefly described the satellites to be considered, this chap-
ter proceeds to present the dynamic model of each satellite with respect
to relevant reference frames.

A section on orbit selection is next described to enable the develop-
ment of approximate models of the disturbance torques. This section con~
tains new results in the analysis of geodetic measurements obtainable
from satellites,

Finally, with the orbits defined, a description of the major attitude-
perturbing torques is presented and comparisons of relative disturbance-
torque sizes are given as functions of the many orbital and spacecraft

parameters involved.

ATTITUDE DYNAMICS OF RIGID SPINNING SPACECRAFT

In this section, equations representing the dynamics of the spinning
spacecraft with respect to relevant reference frames are described as a

means of notation and coordinate system definition.

Spacecraft Kinetics

From Newton's Second Law (Ref. 22), the time rate of change of the
angular momentum ﬁ? of a body in inertial space is equal to the applied

—_
torque T, or

2.1)



where
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I is the inertia tensor of the body and can be represented as the matrix:
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Here, fi is coordinatized in a body-fixed reference frame with orthogonal
unit vectors (QB,§E,QB) and with its origin at the satellite center of
mass.

The vector o , Or &1 is the instantaneous angular velocity of
the body about its center of mass with respect to an inertial reference

frame, and it is coordinatized in the same body-fixed system as
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In this development, it will be égfumed that the satellite is rigid so
_—)
that the time rate of change of I in the body frame is negligibly small.
B .
Solving (2.5) for @ [with (2.1)] yields
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It is also assumed that the body~fixed reference axes are very close to
the principal axes of inertia of the satellite, so that the cross~product-

of-inertia terms Ixy’ Ixz’ and Iyz are much smaller than Ixx’ Iyy’

and Izz. In addition, it is assumed that the ﬁé axis is the nominal



satellite spin axis and that mz is much larger than wx and wy. Then,

to first order,
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If the terms due to the presence of cross-products of inertia are

neglected, the Eqs. (2.6) become the familiar Euler equations:

-
b = 2 T + (I -1 ) w w] , (2.9a)
X I X Yy 2z y =z
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o == T + (I -I Do ol, (2.9b)
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z IZz Z XX yy Xy

Equations (2.9) are used throughout this study as the basic kinetic equa-
tions of the spinning spacecraft. Perturbations to these equations due to

the presence of cross-product-of-inertia terms are considered later.

Relative Coordinate Systeﬁs and Spacecraft Kinematics

It is necessary to define some additional transformations and kine-
matic relationships to describe the inertial orientation of the satellite.
-.-)
One can transform a vector V coordinatized in a reference frame (R) to

coordinates in a body-fixed frame (B) by the transformation

v=_~C v, (2.10)
B B/R R
where CB/R is the orthogonal matrix of direction cosines between the
two frames. C can be represented by the nonclassical Euler transfor-

B/R

10



mation illustrated in Fig. 2.1. Again using the law of Coriolis, it can

be shown that

. B-R
CB/R = -CB/R (w x) . (2.11)

Eqs. (2.11) are the kinematic relationships which, along with Egs. (2.9),

are used to determine the time history of the attitude of the spinning

spacecraft,

N\
IR

FIG, 2,1. NON~CLASSICAL EULER ANGLE TRANSFORMATION FROM A REF-
ERENCE FRAME (R) TO A BODY-FIXED FRAME (B) BY SUCCES-

SIVE ROTATIONS ABOUT THE Xp, yp, AND Zy AXES

THROUGH ANGLES ¢, 6, AND V.

It remains to define the coordinate systems which are used in this
study. The axes of interest are shown in Figs. 2.2 and 2.3, The primary
inertial reference frame is determined by the §I axis pointing to the
Vernal equinox, the 21 axis pointing along the earth’'s spin axis, and

$. completing the right—hand set.
Y1
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1

FIG, 2.2. ORIENTATION OF THE LOCAL (L) REFERENCE FRAME,

FIG., 2.3. ORIENTATION OF THE STAR (*) REFERENCE FRAME

12



Figure 2.2 shows the "local" reference frame with §L along the
direction of the vector R from the geocenter to the satellite. The
axis EL is normal to the orbit plane and along the orbit's angular
momentum vector ﬁ?x V;, and ;1 completes the right-hand set. The
angles i, &, Wps and f have the usual definitions of inclination,
right ascension of ascending node, argument of perigee, and true anomaly.
This system is used as the reference set (R) in the study of controlling
the spin axis to be aligned normal to the orbit plane.

Figure 2.3 shows the ""star” reference frame with 2* pointing toward

the reference star, §* being perpendicular to the plane containing 2*

, and X, completing the right-hand set. Here, A, and ), are
I * * *

the right ascension and declination of the star. These coordinates are

”~
and z

utilized as the reference set (R) in the investigation of precision at-

titude controi with the star tracker.

Linearized Equations of Motion

The equations of motion are next linearized so that they can be used
for control law development.

First, consider the case where it is desired to point the spin axis
normal to the orbit plane. The natural axes about which to apply control
are the local axes labelled (L) in Fig. 2.2. These correspond to the
reference axes (R) in Fig. 2.1. However, the closest possible positions
of the principal axes of the satellite are the intermediate axes labeled
(P) in Fig. 2.1. These axes correspond to a non-spinning set or the
position of the body—fixed axes gt the time when the angle YV equals
zero. Thus, control torques can be applied about the body-fixed axes (B)
such that the average values correspond to those torques required about
axes (P). The equatioﬁs of motion are now formulated in the (P) frame.

Assume that the angles ¢ and @ (corresponding to yaw and roll
angles about §R

that the small angle approximations

and §b respectively in Fig. 2.1) are small enough so

sin © £ 9 ,
sing =9 ,

cos 9 = cos 9 =1,
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can be made, and assume that V¢ =

0. Then the transformation

comes
1 0 =g
CP/L =10 1 ol .
..(p 1
The time rate of (2.12) is
. P-L
CP/L = "CP/L (i X)
where
P-L T B-I B-P I~1
w =CP/L W - ) -w .
L P P L
If one defines thé variables
ax =W,  cos Vv - wy sin ¥ ,
ay =w  Ssin v o+ wy cos Y ,
then
~ =
(07
X
B_
w I = .
P y
w
Z
S—
With
0
B-P
w =10 s
P
-Z,-d
and
0
L-1
w =101,
L ®
o
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be-

(2.12)

(2.13)



one obtains

[0
X
P--L
w =1
L v
Here, & = £+ &P' Thus,
0 o a
y
P-L .
) X) = |~ 0 -Q . (2.14)
X
L
- (0 0
- y X o

Egs. (2.12) -~ (2.14) produce (assuming small angles ¢ and @)
p=0 +00, (2.152)

6=a -0 Q. (2.15b)

If the spin speed of the satellite is controlled to be nearly constant

for a satellite possessing axial mass symmetry (i.e., IXX = Iyy)’ the
equations of motion in the non-spinning reference frame (P) become
. ny ~ . -~ r- - -
x 0 -(1+a )y 0 O o] 1 0
X S X
a (1+a )V 0 o o]lla o ‘1l|r
vl _ s i+ xl (2.16)
&
® 1 0 0 ) 0 o0 Tyl
where
a = ~-1_)y/1_,
s ZZ xx"" Txx

and the disturbances torques (T Tyl) are normalized by I .

’
Now consider the satellite :ir which the attitude controfxsystem's

function is to point the spin axis toward a star. A star tracker, which

is assumed to be aligned with the nominal spin axis, has two outputs called

"star-tracker variables' which are computed from a sighal representing

the star's image on a four-quadrant light~sensitive head. These variables,

defined as Tx and Ty’ are body-fixed orthogonal components of the star's



projection and for small angles are a linear measurement of the misalign-

ment error. Physically, the variables are defined as

T

X

Vy

$ cos ¥ + 8 sin ¥, (2.17a)

-¢ sin ¥ + & cos VY, (2.17b)

Here, the angles ¢ and 6 represent small angular rotations about the
axes X, and y,_ depicted in Fig. 2.3.

For a symmetric satellite, one can write

=, o~
. 0 - ° -T o - g~ oy
. asw 0 0 W i o0
é a v 0 o ollw o 1t
y S 1
Y= A Y+ = *1, (2.18)
1
Yx 0 0 ¥ Tx xx|0 0 Ty
1 0 1 -7 0

where again it is assumed that the spin rate ﬁ is held nearly constant
by control action. Equations (2.18) represent the equations of motion for

the system investigated in Chapter 1V,

"Wobble' Damper Analysis

The precession of a spinning body in the absence of external torque
consists of a rotation about the spin axis and a conical motion of this
axis about the inertially-fixed, total angular momentum vector of the
body. If the body has mass symmetry about the spin axis, this axis pre-
cesses in a right circular cone with half-angle 717 called the nutation
angle. For an unsymmetric body, the nutation angle varies periodically
in a motion referred to as nutation. The combined precession and nutation
motion is known as "wobble.'" In general, it is desirable to remove this
wobble from a spinning spacecraft.

A common method of removal is by use of a mechanical damper of which
several versions have been proposed in the literature and mechanized on
existing satellites. Typical wobble~damper analysis is by means of the
"energy-sink' method introduced by Yu (Ref. 23), which is outlined here.

A symmetric spinning spacecraft has total angular momentum

1/2
H = [12 ((.02 + (.02) + 12 a)Z:] (2.19a)
XX X y ZZ 7

16



and kinetic energy

1 2 2 2
E = —
Z[Ixx(wx + (Dy) + 1ZZ w?] . (2.19b)

Figure 2.4 depicts the geometry of the angles and angular rates of the

”~

B §B’ zB) are rotated from an iner-

tially-fixed set (X, ?, 2) through the classical Euler angles £, 71,

wobble process. The body axes (X

and (. The 2 axis is aligned with the total angular momentum vector

— °*
H. The rates £ and 1 are the inertial precession and nutation. The

FIG, 2.4, GEOMETRY OF THE ANGLES AND ANGULAR RATES
OF THE WOBBLE PROCESS.

nutation angle 1 1is described by

cos 1 = IZz wZ/H . (2.20)

Combining (2.19) - (2.20) and differentiating yields, for small angles,

17



IR T 2.21)

E typically has the linearized form (See Refs. 24 and 25)
. 2
E=—Kd LI

where Kﬁ is a constant dependent upon vehicle parameters. Then (2.21)

can be written

and

where d;l is the time constant of the damper and no is the initial
value of the nutation angle.
If ﬁ is small during one cycle of §, o, is the constant &, and

the nutation angle is approximately

then, by using Fig. 2.4, it can be shown that Egs. (2.16) modify to

Thilas B} ; Ao [ o)

& dp a+a)Vv 0 0lfo; 1 0

& (1+a )V ~dp o olla o 1l

v _ s 4 22 2.2
o 1 0 o ullo o oflT,

6 ] L 0 1 -n oj{e Lo 0]

Equations (2.22) are the linearized equations of motion used for the con-

trol system analysis of Chapter III. For the unsymmetric vehicle, the

*Equation (2.21) shows that for decreasing kinetic energy, the vehicle
spin axis must be the maximum inertia axis for the nutation angle to be
decreasing. This is also true for damping due to elastic deformation of
the spacecraft. Hence, for stability it is required that the nominal
spin axis be the maximum axis.

18



wobble~damping terms have a more complicated effect on the system equations.
The exact equations of a mechanical wobble damper are generally more
complex than has been indicated by the energy-sink procedure, and require
evaluation of a higher order system. However, most wobble-damper refer-
ences indicate that the energy-sink approximation gives reasonably close
results to actual behavior. Thus, the method will be retained rather
than increasing the order of the system equations which would be neces-
sary for a closer investigation of the effect of a particular type of

damper.

ORBIT SELECTION FOR APPLICATIONS OF SPINNING DRAG-FREE SPACECRAFT

Lange (Ref. 26) developed the concept of the drag~free satellite and
proposed many useful experiments for this satellite. The "drag-free
satellite" consists of a small, spherical proof-mass inside a completely
enclosed cavity of a larger satellite. The outer satellite has a gas-jet
translational control system which centers the cavity about the inner
proof-mass. In the ideal case, such a satellite's orbit will be deter-
mined strictly by gravitational attractions and, thus, it is "drag-free.'

Two drag~free satellite applications in which spin is desirable are
the geodesy-measurement vehicle and the carrier of the unsupported gyro-
scope experiment. The geodesy satellite's purpose, as considered here,
is to yield measurements of the unknown tesseral harmonic coefficients in
the spherical harmonic expansion of the earth's gravitational potential.
These coefficients are determined most easily by measuring the in-track
motion perturbations of satellites which orbit at rational multiples of
the earth's spin rate (resonant orbits). Because measurements of the in-
track perturbations to the satellite's position produce the resonant tes-
seral coefficients' magnitudes, it is desirable to eliminate all non-gra-
vitational forces acting on the vehicle by use of the drag-free system.
To minimize (by cancellation) in-~track perturbations caused by the gravi-
tational attraction between the satellite and proof mass, it is important
to spin the satellite with the spin axis maintained normal to the orbit
plane. The degree to which this latter gravitational attraction is re-

duced depends directly upon the pointing accuracy achievable by the atti-
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tude control system,

The unsupported gyroscope experiment consists of using a nearly
spherical rotor, spinning about its maximum axis of inertia, as the proof-
mass‘of the drag-free satellite. Because it is thereby devoid of support
forces, this rotor is a gyroscope existing in a nearly torque-free envi-
ronment. The small motion of the spin axis of this gryo can be monitored
in the satellite by measuring the rotor spin axis deviation from a vehicle-
star reference line. This experiment can produce fundamental information
about achievable accuracies of spaceborne gyroscopic devices. It is de-
sirable to spin stabilize (see Ref. 26) the satellite which houses the
unsupported gyroscope experiment for improved attitude control, and to
effect averaging of a number of already-small torques. The experiment
requires the existence of a very accurate star tracker aligned with its
optical axis along the satellite's spin axis. The attitude control sys—
tem's ability to maintain this spin axis pointing toward the star for long
periods of time with accuracies of better than one arc second is also re-
quired. In order to predict the disturbance torques acting on these spin-
stabilized satellites (and, hence, the pointing accuracies achievable),

the selection of feasible orbits for these two missions is now discussed.

The Selection of Orbits for the Determination of the

Tesseral Harmonic Terms of the Gravitational Potential

From the report by Strange, et al. (Ref. 27), the tesseral harmonic
coefficients of degree 7-15 and order 3~10 are at present relatively un-
known. The following analysis indicates bhow these coefficients can be

obtained by placing a series of satellites into resonant orbits.

Long-Period Perturbations

Long-period perturbations are defined as those with periods of fluc-
tuation of several days in length., Perturbation analysis is begun by con-
sidering the gravitational potential
: 0
£

£=2

=00

4
0 pZO q;_m Rzmpq ’ (2.23)

=] g

s

A\ =
g

where
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Y (4-m) even

a cos
S .
Rzmpq T a (a) sz Fﬂmp (i) Gzpq (e {Sin} Wﬂmpq ) (2.24)
(£-m) odd
and
Wzmpq = [(ﬂ-zp)wp + (4=2p+q)M + m(Q—ee-Xﬂm):] . (2.25)

The quantities a, e, i, §, mp and M are the orbital elements; p is
the product of the earth mass and the universal gravitational constant;
R is the satellite radial distance from the geocenter; ng and kﬂm
are the amplitude and phase angle associated with the tesseral coeffi-
cients of degree /£ and order m. The angle ee is the hour angle of
Greenwich and ae is the earth's equatorial radius. The function

Lm
being rotated into the orbit plane. It is expressed as (Kaula, Ref. 28)

F p(i), known as the inclination function, results from the potential

m

Fﬁm (i) = @4-2t) PYOPS) sinz—m-Zt i N (2) cos® i
P T t)(4-t)! (4-m-2t) 12 séb
- L-m=2t+s m-s o~k
X > ( )( )(—1) , (2.26)
P
c c p-t-c

where k is the integer part of (4-m)/2, t is summed from O to the
lesser of p or Kk, and c¢ is summed over all values making the binomial
coefficient nonzero. The eccentricity function Gﬂpq(e) comes from con=-
verting radius and true anomaly into a, e, and M. For (4-2p+q) # O,

G (e) is expressed as

£pq
G, (e) = (—B)Iq[ (1+ 2)2 5? P Q BZk 2.27)
£Zpq T : B k& Zpgk “Ipgk ! °
where

B =e/(1 +\/5:;§3 s

P = éi 2 (T (z—zp'+q')e)r
£pak = her r! 28 !
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h=k+q'" for q' >0,

k for q' <0,

and
Q _ & (“2"'>i ((E—zp'+q')e)r
gpak ~ Lo\, /7T 2B ’
h=k for q'>0,
=k =-q' for q' 0.
Here,
p'=p, q =q for p s 4/2
p' =4-p, q' =-q for p> 4/2 .

The instantaneous time rate of change of the orbital elements due to
any one term in the gravitational potential is found by using the Lagrange

planetary equations (Ref. 28), which are

da 2 aRE
at " ha M 2.28)
oR oR

de _,/1-€2 £ £
dt z(vlezaM"EiS)’

na e p
d(‘Dp - ¢cos 1 aRZ x/f:gz aRﬁ

= + y

dt 5 2 OJe

na’/l1-e2 sin i na“ e

sin i p
an 1 OR,
H

at na%/l-e2 sin i o1

oR
am _ . 1-62 aRE 2 _ &
dt 2 Ja na da

na e
where Rz = Rzmpq given in Eq. (2.24) and n is the mean orbital rate.

Approximate closed-form solutions to these equations are found by treating
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the angles as linear functions of time (Ref. 28). These linear

fmpg
solutions all have the rate term

¥

- = (ﬂ-Zp)wp + (4=2p+d)M + m(Q-ee)

in the denominator. For example,

2uaﬁ cos (£-=m) even
Aa = W F(l) G(e) (£—2p+q) {sin} "f—ampq ’
g (4~m) odd

These solutions are valid except when this rate term is very small. A

small wﬁmpq

equations change very slowly, allowing large amplitude buildup. Then,

would mean that the sine and cosine terms in the planetary

the assumption of small perturbations leading to the closed-form linear

solution is not valid. The condition where ¢Zmpq Z 0 occurs when

(4~2p+q@)M = m ée )

This is, of course, the condition of resonance where the satellite orbits
at nearly a rational multiple of the earth's rate.

The exact solution to the perturbations of the elements can only be
found by numerical integration of Eqs. (2.28). For the case where the

number of revolutions per day equals the order m, ({-2p+q) = 1. Then,

= - ) + M f)—-.
Wl’,mpq @} q)wp + m( ee) )
= C].O - q (Dp ’
where C is a constant dependent upon the mean elements of the par-

lo
ticular orbit. Thus, for a given orbit, there is a large set of beat

frequencies corresponding to each value of the index gq. This, of course,
implies that the orbit is not inclined in the close neighborhood of the

critical inclination where &p = 0. For (4-2p+q) = 2,

mn

j C. -qb .
111Zmpq 2 lo a wp

Hence, another large set of beat frequencies exists; in fact, many other
sets exist for C10 not equal to zero or ‘some multiple of &p, The

physical reason for the existence of the multiple beat frequencies is due
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to the combined effect of the orbit eccentricity and the slow movement of
the perigee point about the orbit. Because of the multiple beat frequen-
cies, it is theoretically possible to detect the effect of many tesseral
harmonic coefficients from a given resonant orbit.

The time rates of the mean elements are not constant, but only the
acceleration of the mean anomaly, M, is significant in the resonant
situation. From Ref. 29, this acceleration due to a single combination of
indices of a single tesseral coefficient is

3n
-Ega +O(J

. 2
Ampg zm.wﬂmpq) * O(Jﬁm)

"
Zmpq
(Z-m) even

ae L -sin
(;—) (£—2p+q)F£mp(1) Gﬂpq(e) Jﬂm cos' WZmpq . (2.29)
(/-m) odd

e
}
mwl_‘c:;o

Although Eq. (2.295 is approximate, it can be used to determine the rela-
tive magnitude of the perturbations to the in~track position of a satel-
lite in a nearly resonant orbit. The highest possible eccentricity is
desirable for such orbits because Gzpq(e) is proportional to e a1t
is precisely this eIql attenuation factor which physically prevents
beat frequencies associated with higher values of [q! from being de-

tectable.

Resonant Analysis Results

A general study was made of the feasibility of measuring the 72 pairs
of the coefficients of degree 3-10 and order 7-15 by computing the magni-
tude of Eq. (2.29) for several combinations of the indices (£4,m,p,q).

The magnitude IMlzmpq was computed as a function of inclination, and

the semimajor axis and eccentricity were chosen so the orbit was resonant,
with the altitude of perigee being 450 km. Typicai plots of |M| wvs. i
are shown in Fig. 2.5. The complete set of these plots for other combin-
ations of indices (f,m,p,q) can be found in Ref. 30. The hypothetical

value of sz used in the computation of ’M[ was

5 oo | Umm)l(4e+2) 1/2 3
fm (f+m) ! Im ’

where jzm is the normalized approximation given by Kaula (Ref. 28) as
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I, EVE X 107°/8

As a criterion for choosing acceptable orbits for tesseral harmonic
measurement, the maximum value of IM] being greater than 10_5 degree/
day2 was considered to represent a éubstantially measurable effect.
Maximum lM| between 10—6 and 10--5 degree/day2 was considered to be
marginally detectable.

Using this criterion and taking advantage of the multiple beat fre-
quencies, orbit inclinations were found such that the effect of all but
possibly three of the 72 pairs of unknown coefficients can be measurable
from only four resonant orbits. In the final orbit specification, it is
required that inclinations be adjusted to insure that the resulting data
is well conditioned. The magnitudes of maximum IM] for a set of four
suitable orbits are presented in Table 2.1.

The general orbit selection for optimum tesseral harmonic determina-
tions requires orbits to be as eccentric as possible and have inclinations
between 20° and 70°. From the attitude control standpoint, these facts
have two pertinent implications., They are:

1. Atmosphere torques can be significant because of the high eccen-

tricity.

2. The magnetic field will be favorable (as explained later) for

its utilization as the primary control torque source.

Orbit Selection for the Unsupported Gyroscope Experiment

For the unsupported gyroscope experiment, the proof-mass of the drag-
free satellite becomes a spinning spherical rotor with the spin axis
pointed toward a star. For rotor stability, the rotor spin axis is de-
signed to be the maximum axis of inertia. Because the rotor does not have
spherical mass symmetry, it will be subjected to gravity-gradient torques
from the earth. To minimize these torques, the satellite's orbit is
selected to be circular and polar with the plane of the orbit containing
the reference star. Thus, the spin axes of the rotor and the surrounding
spinning satellite will be nominally in the orbit plane. The polar in-
clination prevents the orbit plane from precessing. The gravity-gradient

torque effect on the rotor is minimized by the averaging effect of this
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orbit.
The altitude of such an orbit should be high enough to avoid large
atmospheric drag and yet low enough to ease boost requirements. The

nominal orbit altitude studied here is 700 km.

SATELLITE ATTITUDE DISTURBANCE TORQUES

In this section, analytical expressions are developed for the major
perturbing torques which act upon a satellite. There are several reasons
for including this section at this point. A primary goal of this study
is to examine the degree of accuracy to which the spin axis of the rotat-
ing vehicle can be kept pointing to some given reference. If no distur-
bances are present, the answer is simple; any asymptotically stable reg-
ulator will do the job. But this is not the case. The ability to deter-
mine the actual motion taken by the vehicle and to establish the require-
ments for its attifude control system depend directly on a thorough knowl-
edge of the torque environmment which influences the satellite.

When proceeding to design a precision attitude control system, it is
necessary to know the torque profile with which the system must be able
to cope. This knowledge can be gained by developing a model for each of
the more important torques which are functions of the orbit, the desired
reference tracked, and the vehicle design itself., With the torque charac-
teristics known, the designer can determine the time history of the torques
acting on the satellite during its orbital lifetime. This time history
can either be formulated as analytical expressions which are functions of
time or orbital position, or.it can be determined by computer simulation.
(Computer simulation of disturbance torques as functions of orbital posi-
tion can be used to develop approximate analytical expressions of the
torque environment.) |

With an adequate description of the disturbances torque history, one
is able to determine the angular momentum and power requirements of the
attitude control system. Another important motivation for this study-is
for the case where a satellite utilizes magnetic attitude control. Here,
there are portions of the orbit (as will be seen later) in which full

attitude control cannot be maintained. The amount the spin axis
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drifts off the reference at these times depends directly on the distur-
bance torque values.

Disturbance torques considered here can be broken into three cate-
gories. Two, referred to as "inertially-fixed" and "body-fixed" torques,
are those which tend to move the spin axis off the reference and are
about the vehicle's lateral axes. The third type of torque is about the
spin axis and tends to change the rate of spin speed. Disturbances due
to misapplied attitude control torques (caused by system errors such cs
sensor noise, coil misalignment, and electronics delays) will not be con-
sidered here. Their effect will later be examined in the error analyses
of particular systems. The discussion of torques due to nonsymmetry of
the spacecraft will also be deferred until later.

Analytical models are developed here of torques (averaged over one
satellite rotation) caused by the following sources:

1. The atmosphere,

2. Radiation pressure ,

3. Misaligned and leaky translational control jets ,

4, Gravity-gradient effect,

5. Magnetic effects,

6. Reference-frame kinematics.

Other torque sources of minor importance may be present and will be
briefly mentioned. In the analysis it is generally assumed that the satel-
lite is cylindrical in shape and spinning nominally about its maximum
axis of inertia. Other assumptions will be made at the time that they are

required.

Torques Due to the Atmosphere

It is generally assumed that spacecraft in earth orbit are exposed
to atmospheric density low enough that free molecular flow takes place.
Free molecular flow is defined as the limiting flow which exists when
the Knudsen number (the ratio of the molecular mean free path to the
greatest projected body length perpendicular ‘to the flow direction) is
greater than 10,

Schaaf and Chambre (Ref. 31) developed the exact expression for the

pressure and shear forces acting on a surface in free molecular flow.
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These expressions are complicated functions of the ratios of surface tem-

perature to environmental temperature and vehicle speed to the mean

thermal speed of the molecules. Schamberg (Ref. 32) showed that for typi-

cal values of the latter ratio existing in satellite flight, the normal

and shear forces per unit wall area are approximately

V_ sin 3
V2 2 r T
= i P e —
p = pV, sin ni{} + & ¥ sim ﬂ-] , (2.30)
i i
and
V. cos 7
= i -0 L T .
Ty pV? sin 1, cos ni[} b V- Som ﬂ-] , (2.31)
i i
respectively. Here,
Vi = relative speed of incoming molecules,
Vr = relative speed of outgoing molecules,
qi = angle between incoming velocity and the wall surface,
n,. = angle between wall and V;,
o = mass density,
@b = beam width factor.
(See Fig. (2.6).)

i ki

a1/

FIG. 2.6. ATMOSPHERIC SURFACE FORCE GEOMETRY.

Schamberg also shows that @b ranges from 2/3 to 1 when re-emission

i ime. Al vV/V, & /1~
goes from the diffuse to spectral regime so, r/ i 1 aa where aa

is the accommodation coefficient for the particular surface defined as
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nr mi
oza =5 -7  ° (2.32)

mw mi

Here, T ., T , and T are absolute temperatures of the incident and
mi mr mw

reflected molecules and the wall. The angle N, is related to N4 by
cos 1 = (cos 7 )Y (2.33)
r it :

where v ranges from 1 for spectral reflection to o for diffuse re-
emission.

There exists a wide range of accommodation coefficients experimen-
tally determined for various wall materials and flight conditions. Moe
(Ref. 33) presents accommodation coefficients ranging from 0.65 to 0.95
for flights of Explorer VI and Ariel II where the greatest percentage of
the surface areas are coated with solar cell material. Schamberg pre-
sents data for aluminum and iron surfaces exposed to gaseous nitrogen
with O, ranging from 0.32 to 0.50.

For the case of diffuse re-emission, Eqs. (2.30) and (2.31) become

A

. . 2 r
p = pV? sin ni[%ln ni + 3 Vi] , (2.34a)

= j . 93
Tg pVi sin n, cos 1, (2.34b)
For spectral re-emission, they are
v
2 . 2 1 4 =L

p = pVy sinomy |2 TR (2.35a)
2 o cos W (2.35b)

Tszpvi sin ni ni Vi

Equations (2.34a,b) and (2.35a,b) represent the range of values of normal
and shear forces acting on an incremental area of satellite surface.
These expressions can be integrated (over the surface of the satellite ex-
posed to the incoming velocity) to find the total forces acting on the
vehicle for different orientations with respect to VZ. Carrying out this
integration over the cylindrical surface yields a shear force of

= i .36
Scyl 2f_4r pV? sin q, cos n, , (2.36)
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where it is assumed that all elements of the cylindrical shell have the
same re-emission characteristics. This force acts at a distance from the
centerline of nr/4. Here, fT ranges from 1 to [1 - Vr/Vi] as in-
dicated in (2.34b) and (2.35b) and { and r are the length and radius

of the cylinder. Similarly, the total normal force acting on the cylinder
is found by integrating the force component on each element which is paral-
lel to the normal force 5; acting on the element contained in the V;,E

B
plane. This yields the normal pressures

7 Vr
P 1 =24 r pV? sin Ny sin Ny + 3 o B (2.37)
Y giffuse i
and
2 2 Vr
P =zir pV? sin” .13 + =] . (2.38)
cyl 3 i i V.,
spectral i

Noting that the angle which the relative velocity vector makes with the

end plate is (/2 - ni), the normal and shear forces acting on the end

are:
Diffuse:
A"
2 2 r
= - — 2.39
Pog =™ pV? cos 1, lcos 1, + 3 7] ( )
2
= i 2.40
Send nr pvi sin n, cos 7, ( )
Spectral:
A"
r 2 2
= — 2.41
Pend (l + Vi T pVi cos m, ( )
Vv
iy 2
N R ; 2.42)
S ond 1 Vi)ﬁr pV? sin n, cos 1, , (

where again constant re-emission characteristics are assumed.
If the vehicle's center of mass is removed from the center of pres-—
sure by an amount &z along the spin axis and &r away from the center-

line, then the average inertially fixed torque acting on the satellite due
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to the above components is (See Fig. 2.7)

g r ~
T = |S . 2 +5z) + P . - — S 2.
Iaero [end 4/ 52) cyl bz 4 cyl]e (2.432)
o7 : -
for zB'ViS < 0 with vector Vis the relative velocity of the satellite
and
fowcd nr A
= -|8 - - . - =S .
T aero [end(ﬁ/z dz) Pcyl 5z 2 cyl] e (2.43b)
for 2.+V. >0, where & =2_xX V. v _ sin n,). The resulting body-fixed
B 'is 7 7! B is' is b1

torque magnitude is

=P . . .44
TBaero end or (2.44)

FIG. 2.7. AERODYNAMIC FORCES AND TORQUES ACTING UPON THE
CYLINDRICAL SATELLITE.
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It can be seen that with 8z = dr = 0, and with all surfaces of the satel=-
lite having the same reflective properties, these torques disappear.

There is also a disturbance torque from the atmosphere because the
satellite is rotating. As developed by Johnson (Ref. 34), this torque

can be written as
- > a~>
T = -p0-[_(@d - 1d-dds'V,_ - oV, x [ T@x d)&,  (2.45)

.-.—)
where d 1is a vector from some origin to the incremental area of the
-—)
satellite surface ds. Integrating this expression over one end of the
cylinder and over one-half the cylindrical surface yields the disturbance

torque

is
w 2 w 2
n 2 X 2 £ A~ y 2 ~
E}Vis 3 r cos 1 (Vis {r + 2} 1 + Vis {r + 5 y1
2 wﬁ a& A
+ r v tan Tli v Zs ’ (2.46)
is is

where the expression in the first set of brackets is that torque due to
the cylindrical shell,and the expression in the second set is that torque

due to the end plate. The unit vector X is normal to 2. and lies in

1 B
the plane of 2B and VZS. The vector ?1 = 2B><§i. For a vehicle with
wz >> wx and wy, this torque simplifies to
2 ﬁr3
=~pV, rw|2s 1 si + —— coS zZ 2.47
Saero P¥is Z in Ty 2 ©0% Ty)%g » ( )

which is a despinning disturbance torque.
.—-) .
The relative velocity ViS of the incoming atmosphere is found by
adding the inertial velocity of the atmosphere to the negative inertial

velocity of the satellite or
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V=7, 47
is © 1 air ’ (2.48)
with
- - -
= K b4
air woe R (2.49)
_9
where W, = earth spin rate,
= .
R = radius vector from the geocenter, and
Kw = wind constant.

The angular velocity of the upper atmosphere has been determined by
examining changes in inclinations of various satellites by King-Hele
(Ref. 35). He found Ky = 1.46 for nine satellites at heights of 200~
300 km.

The literature abounds with atmospheric density models used for
various research projects. The model used here is a modified version of
the Jacchia model which has been approximated by a set of polynomials for
numerical use. Its development, which is presented in Appendix B, ac-
counts for %he day-night effect, the 27-day solar effect, the ll-year
solar cycle, the semiannual effect, and the magnetic storm effect for

altitudes above 120 km.

Radiation Pressure Torques

The four sources of radiation which cause force and torques on satel-
lites are direct solar radiation, solar radiation reflected by the earth
and its atmosphere, direcf radiaﬁion from the earth, and radiation emitted
by the satellite. If one assumes geometric symmetry of the satellite sur-
face material and even temperature distribution over the cylindrical wall
due to the satellite’s rotation, no inertially-~fixed torque will result
due to the last effect. Any body-~fixed torque from end-plate emitted
radiation can be lumped in with the body~fixed torque due to atmospheric
effects.

Vector approximations to the incremental pressure caused by the first
three sources have been developed in Appendix C and are summarized here.

For direct solar radiation,
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-5 - -
-4,66 X 10 %D dyne/cm2 for cos l(ﬁo'ﬁ) < = + Ccos 1(ae/R) , (2.50)

s
1)
i

) PER - I3

=0 for cos—l(ﬁo-ﬁ) ==+ cos-l(ae/R) s

--)
where Ral is the incremental solar radiation pressure, @@ is a unit
vector in the sun direction, and a, is the earth radius. For earth
—
emitted radiation, the pressure Ra2 is

= ~6
Ra, = 7.53 X 10 (ae/R)2 R dyne/cmz . (2.51)

The pressure due to the earth-reflected radiation has magnitude
-5 -4 2
Ra3 =1.80 X 10 © exp (~3. X 10 ha) cos o dyne/cm (2.52a)

(where ha is the altitude in km, and qo = cos—l(QQ-ﬁ)) for ab < n/2,
and zero elsewhere. This magnitude is about 37 per cent of the direct
solar radiation, for example, at an altitude of 100 km above the subsolar
point. This radiation vector acts in the ﬁ,ﬂa plane at an angle (Otﬁvn)

radians away from QD’ where
=1 (/)% rad (2.52b)
Ya T 1Y rad .
and

£, = 4.89 - hy(5.82 X 10'4) rad . 2.52¢)

Egs. (2.72 a,b,c) were found empirically from numerical integration of
reflected radiation visible by the satellite at varying positions with
respect to the QD direction, '

According to Evans (Ref. 36), the pressure and shear stress components

: -
due to a radiation source vector Ra striking a wall at an angle {

r
range from
p = (Ra) sin € (sin §_ + 2 p.) (2.53a)
r r 3Fr ?
= j 2.53b
Ty (Ra) sin Qr cos Qr , ( )

for diffuse reflection, to
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p = (Ra) (1 + pr) sinZ gr , (2.54a)
T, = (Ra) (1 - pr) sin §r cos Qr . (2.54b)

for spectral reflection. Here, Py is the surface reflectivity.

It can be seen that Eqs. (2.53) and (2.54) have exactly the same
form as Egs. (2.34) and (2.35) in the previous section on aerodynamic dis-
turbances. Because the radiation pressures have been formulated as vec-
tors, the radiation disturbance torque evaluation can be done in exactly

the same fashion as the aerodynamic analysis.

Translation Control Torques (Average Effect)

If the satellite is drag-free, translational control gas jets are
provided to keep the outer spacecraft structure following the transla-
tional motion of the shielded proof mass. Assume that for a rotating
cylindrical satellite, there would be six gas jets arranged with one cen-
tered on each end and four laterally spaced every 90° about the central
perimeter of the cylinder. The two jets on each end would fire intermit-
tently to counteract the total cylindrical shear force S8 and end-

cyl

plate normal force Pend caused by aerodynamic and radiation effects dis-

cussed previously, and to keep the proof mass centered along the £B direc-
tion. Likewise, the four jets located symmetrically about the cylinder
would fire to counteract the total normal pressure forces Pcyl on the
cylindrical wall and the end-plate shear force S and to maintain

lateral centering of the proof mass, ene

There are two apparent ways in which transiation control jets could
produce disturbance torques on the satellite. One torque would occur
due to any misalighment in the structural mounting of the jet (i.e.,
the line of force of the jet not passing through the center of mass of
the outer structure). A lateral jet skewed or misaligned toward an end-
plate would tend to produce an average inertial torque about an axis normal
to the plane containing the net aerodynamic and radiation pressure force
acting on the vehicle,. The same jet skewed to one side would cause a

spin-speed chénging torque. If a lateral jet were mounted so that the

equivalent moment arms' lengths with respect to the center of mass were
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Oz and Or the resulting torque magnitudes would be

J j1’
T -1 (s + P ) Bz (2.55a)
Ij 4 “emd = cyl 3’ o8
T = 1 K (S + P ) or (2.55b)
sj1” 4 " g1 end cyl j1 - )
TIj is an inertia11y~fixed torque in the average sense but can also be

modeled as a discontinuous body-fixed torque. Tsjl is the spin torque.
The term Kﬂl in Tsjl accounts for limit-cycling of the translational
control system. This occurs when control jet force is strong enough to
accelerate the vehicle across its deadband before drag force turns it
around.

An intermittently firing end-jet will not cause an average inertially

fixed torque but can cause a spin torque equal to

Tsj2 = KzZ(Scyl + Pend) Srjz . (2.56)

Here, KﬂZ is the limit cycle effect and 6rj2 is the effective lever

arm. The limit cycle terms K'e1 and KBZ are drag-force dependent and
with careful design can probably be treated as equal to unity.

The cher torque source exists when a jet is leaky and misaligned.
A lateral jet with effective leak force Pc will cause a body-fixed

torque

Tle = Pcﬁzj s (2.57a)

and a spin torque
T ..=P dr _ . (2.57b)

Similarly, a leaky end-nozzle with force Pe will cause a body~-fixed

torque

(2.58a)



and a spin torque

T ., = Pe or (2.58b)

sj4 j2 ’

where Srjl, Srjz, 6rj3, and Szj are appropriately defined lever arms
with respect to the vehicle center of mass. Direction of torque vectors
depend on satellite and nozzle geometry.

The actual effect of torques due to translational control being dis-

continuous rather than continuous will be discussed in more detail later.

Gravity Gradient Torque

For gravity gradient torque effects (See DeBra, Ref. 37), one can
assume the earth is a body with axial symmetry about its spin axis. Thus

its gravitational potential can be written as

=]

vV (R,0 ) = £|1 - :Z‘ J. (a /R% P (cos 0] (2.59)
g p k=2 ke k p

where Pk(cos Gp) are the Legendre polynomials;

=1
PO(cos Gp) ,

Pl(cos Qp) = COS Gp.,

°
.

ir
Pk(cos Qp) ='E[}2k-1) cos Qp Pk_l(cos Qp) - (k—l)Pk_z(cos Gpi] .

(2.60)

— ~ A . .
Gp is the colatitude cos 1 ﬁ . ze, where R and Ee are unit vectors

along the geocenter-satellite radius and earth spin-axis respectively.
The constant | 1is the mass of the earth times the universal gravitation
constant. The coefficients J are empirically determined by experi-

k
ment for the earth, and typical values are (Kaula, Ref. 38)
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J =1082.3 X 10"6 ,
2
-6
JS = ~-2.56 X 10 ,
and
J4 = ~2.04 X 10 6.

Neglecting terms higher than J the potential (2.59) becomes

2’
v (R 9)~31—J—2(a/R)23 26 - 1) (2.61)
g 9 =& > e (3 cos p . .

The force attraction of a particle of mass mp at a point p 1is the

gradient of (2.81) or

—
f =m_ VV_ ,
b
avg R avg
- | —E -8 .62
"ol S © TR S0, | (2.62)
1Y
where
”~ el N ~ ~
(ze X R) XR cos OpR - ze
@P B A ~ = sin 6 ! (2.63)
lzeXR| P

the unit vector in the direction of increasing Gp. Thus (2.62) becomes

Vg, 1Y i1 g}

o ™R TR 38 ot Op|F "R e, °°
= wnp - —2' - E’ Z (1 - 5 cos e ) R - 49 cos O z
R R R
b b p

(2.64)

‘%
The position Rp of each point mass in the satellite can be written

- -
R =R+ (0 , (2.865)
b b
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-
where R 1is to the satellite center of mass and B; is the vector from

the mass center to p. The torque about the center of mass is

— - -
T = o Xt . (2.66)
gg T p p
p
2
Rp can be expanded to
2 = = 2 = 2
RO=R_ R TR (1 +20 - R/MR) . 2.67
D p D ( pp /R7) ( )

Using (2.67) and (2.64) in (2.66) yields the torque equation in invariant

form,
2 2
J_R (1-7 cos“ 6 )
- Spas 3B~ H ~ 3
T =32HR TR+ 15 —22 | P Rx7-%®
gg R3 R5 2
~ o3 2 1 A 3 A
+cos 6 RXT.-2 +2 X1.R)-=2 xT.21]. (2.68)
P e e 5 e e

=3
Here, 1 1is the moment-of-inertia dyadic of the satellite.

Magnetic Torques

Magnetic disturbance torques are primarily caused by current loops
in the spacecraft and materials subject to permanent or induced magnetism.
The instantaneous torque is thg vector cross product of the spacecraft's
effective dipole moment MS and the magnetic induction of the local

field fﬁ or

=1

=M X B. (2.69)

This is the same type of torque which is to be used for control purposes
in this research, but here ﬂ; is considered to include all but the
dipole generated by the control coils. Generally, for a spacecraft which
employs magnetic attitude control, care is taken to minimize the space-

craft-fixed dipole and magnetic characteristics in order to not influence
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on~board magnetometer readings. However, shielding can hide a certain
portion of the dipole, and spacecraft magnetic characteristics can change
between the laboratory and the orbit. Reference 39 gives an account of
spacecraft whose attitudes have been measurably affected by the dipole.
For a spinning satellite with dipole component MZ along the spin axis
and ML along a lateral axis, the resulting inertially fixed torque
magnitude TIM will be

T = M B , (2.70)

where BL is the lateral component of the magnetic field. For Bz
equal to the component of B along the spin axis, the body-fixed torque

will be
T = B
BM ML 4

Because the satellite spins with respect to the magnetic field
vector, torques due to the induced currents (eddy currents) and the
irreversible magnhetism of permeable materials (hysteresis effects) must
also be considered. Smith (Ref. 40) developed the theoretical expres-
sions for determining the eddy current torques due to rotating shells.
For the cylinder, the §e—axis is defined so E) lies in the ﬁe’gB
plane and forms the angle An with the EB- axis. The total torque,

in vector form, is

2 2r )/

2 . 3 ' N . A
B wz sin ﬁir zdw< — tanh‘—;>(cos %hxe sin )h?B) ,

— -
Te = no,C 2 2r

e g
2.72)

where O, is the electric conductivity of the shell material, C, is
the speed of light, and dw is the wall thickness. This torque will be
assumed to approximately represent that torque due to eddy currents in-
duced into the vehicle structural components. It can be seen to have
both an inertially-fixed component and a spin component.

The energy loss per cycle due to permeable material being rotated

in a magnhetic field is
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AE = Vol[(B dB,) , (2.73)

where Vol is the volume of material and Bi is the induced magnetic
flux in the material. This expression can be directly converted to a

spin torque.

Kinematics of the Reference Frame

If the spin axis reference is moving, a control torque is required
to precess the spin axis to follow this reference. For the spin axis
to point normal to the orbit plane, for instance, control torque must
be provided to precess the spin axis at a rate which matches the preces-
sional rate of the orbit plane. This change in inertial orientation of
the referenée can be thought of as an inertial disturbance torque precess-
ing the spin axis away from an inertially fixed reference. For a satel-
lite in an earth orbit with inclination i, the instantaneous orbit

precession rate is, to first order,

-3u J az cos i sin2 o
. 2%
Q= (2.74)

H R3
o

where p 1is the product of the universal gravitation constant and the
earth mass, ¢ 1is the sum of the orbit's argument of perigee and the

true anomaly, Ho is the orbit's angular momentum with respect to the

earth, and J2 is the first harmonic term in the expansion of the earth's

A

potential [see Eq. (2.79)]. This rate is about the earth spin axis ze.
When averaged over one orbit, this rate is approximately
. 3 L2

=-=J(a/p)ncosiz , (2.75)
ave 2 2 e e
where n is the mean motion and p the semilatus rectum.

For the case where the spin axis of thé satellite is required to
be kept normal to the orbit plane, the geometry can be described as in
—B~-R

Figure 2.8. Here §k = EB P (Qe X QB)/sin i. The rate of change W~

of the spin axis position with respect to the moving reference is
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wB R _ ~{i(cos i EB + sin i ﬁk) . (2.76)

The nominal angular momentum of the satellite is
H=1 w 2_, (2.76)
so the "kinematic disturbance torque" is
T =Qsinitw ¥ 2.77
Kk = sin 1 1 W Y o LT77)

where =Z X X is along the descending line of nodes.

A N\
Zg Xk

ORBIT PLANE

EQUATOR
PLANE

A\
FIG. 2.8. GEOMETRY OF "KINEMATIC" DISTURBANCE TORQUE.

Other Torque Sources

There are a multitude of other sources of torques which tend to
change the attitude of the satellite. Models of these torques are not
developed here because these torques can be included with torque sources

already discussed, or their effect is relatively small.
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Torques similar in nature to aerodynamic and radiation torques are
those due to dust clouds and electric drag on a charged satellite.
Torques which resemble translational control jet torques are those caused
by meteorite impact (in the impulsive sense), and the venting, outgassing,
and leakage of system parts (in the average sense).

Additional gravitational torques are caused by higher order terms
of the earth potential, the tidal bulge, and the moon and sun although
these are definitely second order. Any moving parts which may exist on
the satellite must be considered as possible torque sources. Finally,
because no satellite is perfectly rigid, satellite wobble causes small
elastic damping forces which act to decrease the satellite energy. How-
from these inertially-fixed torque plots. Also, the effect of any param-
eter changes- on the satellite (such as increased c.p. offset from the mass

center) can be directly deétermined.

Disturbance Torque Magnitudes

As a means of determining thé total disturbance torque acting on a
cylindrical spinning satellite, a digital computer program was written
using the torque expressions developed in this section. This program
computes the torques as a function of the parameters which change with
orbital position of the satellite. Typical "inertially-fixed" torques
acting on the orbits described in the previous section are presented in
Figures 2.9-2.12. In both cases it is assumed that the ends and cylin-
drical wall have the same difque reflection properties. The body-fixed
and spin torques also acting on the satellite can directly be estimated
from these inertially-fixed torque plots. Also, the effect of any
parameter changes on the satellite (such as increased c.p. offset from
the mass center) can be directly determined.

The orbits selected for these plots are representative of typical
ones for the drag-free satellite applications considered. Figures 2.9~
2.10 are the yaw and roll torques acting on a spinning satellite in a
resonant orbit of 15 revs/day. Here, the spin axis is controlled to

point normal to the orbit plane. Perigee altitude is 300 km at the
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subsolar point and inclination is 45°. These torques are not inertially

fixed literally, but instead are fixed in the local frame of reference.

Figures 2.11 - 2.12 represent the inertially fixed torques about a

spinning satellite in a circular, polar orbit with the spin axis con-

trolled to point at the star Canopis. It is assumed that the orbit plane

has precessed 10° to the left of the right ascension of Canopis.

The basic parameters used for these plots are

Geodesy Star Tracking
Satellite Satellite
Length (m) 0.5/0.75 0.5
Radius (m) 0.5 0.5
Spin moment of inertia (kg—mz) 15. 18.75
Transverse moment of inertia (kg—mz) 10. 12.5
Spin speed (rad/sec) 1. 1.
Skin thickness (cm) 0.1 0.2
Mass center displacement from
center of pressure (cm) 0.5 -1.,0
Average moment arm from jet
misalignment (cm) -0.5 1.0
Average skin reflectivity 0.0/1.0 1.0
Accommodation coefficients 0.64/0.84 0.89
Decimetric flux index 100/300‘ 300
Spin axis magnetic dipole (Ampvmz) 0.6 0.6
Magnetic activity index 7 7

It is noted from Figures 2.9-2.10 that aerodynamic torques are

significant at perigee, and kinematic and dipole torques are the chief

disturbances throughout the rest of the orbit. From Figures 2.11-2.12,
it is noted that ‘the gravity gradient ahd dipole torques are the largest.
Careful vehicle design can, of course, Substantially reduce the distur-
bance torque levels except for the kinematic and gravity gradient torques

where they are pertinent.
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CHAPTER I1I

A MAGNETIC THREE-DEGREE-OF-FREEDOM ATTITUDE CONTROL SYSTEM FOR

AN AXISYMMETRIC SPINNING SPACECRAFT WITH HORIZON SENSOR

ERROR MEASUREMENT

This chapter is a study of a continuous maghnetic attitude control
system which points the spin axis of a symmetric satellite normal to
the orbit plane of a highly eccentric orbit. This control system also
maintains nearly constant vehicle spin speed. The attitude error mea-
surement comes solely from a pair, or several pairs, of infrared horizon
sensors placed upon the vehicle. V

Horizon sensors mounted with their sensitive axes in "vee" shaped
pairs as shown in Figure 3.1 are able to produce a sampled measurement
of the roll error of the satellite. Because the variables in the ve-
hicle's attitude motion are mathematically observable, it is feasible
to build a state observer which estimates the yaw error and body rates
from the horizon sensor measurements. The sensor signals are noisy, so
a Kalman filter is utilized for the observer. Techniques are studied
for processing the sampled input with the continuous filter.

With the satellite attitude~error state known,‘a minimum-power
optimal control law, utilizing a quadratic function of the state ele-

ments and control effort as the performance index, is developed to drive

SCANNER OPTICAL AXIS

ORBIT PLANE

FIG. 3.1. HORIZON SENSOR "VEE" CONFIGURATION THAT PRODUCES
TWO PULSE SIGNALS WHOSE DIFFERENCE IS PROPORTIONAL
TO THE ROLL ERROR.
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the state to zero. This control law takes into account the possible
existence of a passive nutation damper as part of the attitude control
system. Gains for the control law are obtained from the general solu-
tion of the optimum regulator for a fourth-order system possessing com-
plex symmetry. This general solution is derived in. this chapter.

Next, a study of magnetically mechanizing the desired control torques
is presented. The resulting controller has three logic modes making pos-
sible both pointing control and spin speed control. This investigation
also demonstrates that a single electromagnetic coil skewed to the spin
axis can provide both types of control.

To simplify the onboard computational requirements, the control
gains are implemented as constants. Because of the fluctuating magnetic
field, constant gains produce time-varying control torques. This varia-
tion poses the question of how large the fluctuations can be and still
insure attitude stability. Bounds on the control gains which guarantee
stability are explicitly established by the generation of suitable
Lyapunov functions and the use of averaging techniques. System stability
bounds are established for satellites with and without the nutation dam-
per. The Lyapunov functions are obtained from a generating procedure
which is derived for systems possessing complex symmetry.

The last section summarizes the results of the analog and digital
simulations used to verify and extend the preceeding analyses. The gen-
eral performance capabilities of the control system during transient
response and in the presence of disturbance torques and system nonlin-

earities are explored.

STATE ESTIMATION BY FILTERING HORIZON SENSOR DATA

By proper placement of a pair of infrared horizon sensors (bolo-
meters), it is possible to measure directly the spinning satellite's
roll error 6. (See Fig. 2.1.) Because of the structure of the satel-
lite's state equations, the system is observable. Therefore, a filter
can be constructed which will produce estimates of the other state vari-
ables from the roll-error measurements. To account for random distur-

bance torques and measurement noise, a steady-state Kalman (Wiener)
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filter is developed which gives best estimates of these states. This

system is developed in this section.

Horizon Sensor Determination of Roll Angle, Spin Speed,

and Orbital Rate

Roll-error measurement can be provided by using the output of two
infrared bolometers arranged with their optical axes in a "Vee" config-
uration, as shown in Figure 3.1. The optical axes lie in a plane con~-
taining the vehicle spin axis. As the satellite spins, the optical axes
sweep out two cones in space. Each sensor periodically responds to the
radiance change existing between cold outer space and the warmer infrared
earth. )

The intersection of these sensor paths with the earth, and the cor-
responding sensor output are shown in Figure 3.2. When the spin axis is
normal to the earth-satellite radius vector, the sensor pulse outputs
will have the same width and occur at the same time for an ideal spheri-

cal earth. If a roll error exists, pulse duration will be different, as
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FIG. 3.2. HORIZON SENSOR OUTPUT WITH AND WITHOUT ROLL ERROR. This
representation illustrates looking at the spacecraft
with the earth behind it.
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illustrated. A yaw error will not be fully detected by such a sensor

until 90° later in the orbit when it becomes the roll error.

The geometry of

where

ot W (o4
= S @
1 i Il il il 1l

R
]

the horizon sensor scheme is depicted in Figure 3.3

roll error,
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90°+49

EARTH

SENSOR PATH

POINT OF HORIZON
CROSSING

|
l
f
I
|
|
|
~
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line joining the satellite and the point where the

sensor optical axis crosses the horizon,
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angle between the spin axis and the horizon

crossing point,
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The pulse width tl for an ideal spherical earth can be computed

as

cos B + sin 6 sin d
-1 v v

2
w cos 6 cos B
v

(3.1)

Equation (3.1) was used to compute the output characteristics of

sensors with half-vee angles of 3°, 6°, and 9° for an elliptic orbit

with an altitude ranging from 300 km at perigee to 27559 km at apogee.

Orbital rate was three revs/day.

The roll-angle error as a function of

two 9° sensor pulse~width differences is shown in Figure 3.4 for various

values of the orbit radius between the indicated apogee and perigee.
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FIG. 3.4. ROLL ERROR VS SENSOR SIGNAL PULSE DIFFERENCE FOR

9° HALF-VEE ANGLE IN A 3 REVS/DAY ORBIT. Here,
hp = 300 km and e = 0.6711. Parameters of this
plot are values of the geocentric radius from
perigee (6678 km) to apogee (33937 km). Also
indicated is the average sensor pulse width.
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Here

At = (tz - tl)/z ’

where tz is the pulse width of the left sensor. The roll error is
found by multiplying the pulse difference by a gain (slope of curves
such as those in Figure 3.4) which is altitude dependent. This gain,
as a function of average pulse width, is shown in Figure 3.5 for the
three sensor angles investigated here. (The pulse width average re-
mains fairly constant at a given altitude for small values of roll
error.) As can be seen from Eq. (3.1), the error signal is less sen-
sitive with a larger half-vee angle. However, a trade-off must be made

because larger sensor angles will cause the sensor to miss the earth

at high altitudes of the highly eccentric orbits.

[e:]

GAIN (rad/sec)
H
|

0 L. I I l J
o 0.4 0.8 1.2 .6 2.0 24

PULSE WIDTH AVERAGE , Tpye (sec)

FIG. 3.5. ERROR GAIN VS PULSE WIDTH FOR DIFFERENT
HALF-VEE ANGLES IN A 3 REVS/DAY ORBIT.
These gains are the slopes of the curves
similar to Figure 3.4.

Because the horizon sensors produce a pulse train (where the pulse

width varies with satellitelaltitude), this output can also be used to
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give a direct measurement of the vehicle's spin speed and the current

orbital rate § of the vehicle.

Kalman Filtering for State Estimation

The linearized state equations of the symmetric spinning satellite

in an elliptic orbit, as presented in Chapter 2, are

& ~d -D 0 ol [« 1 0| ~ -
x p x T
& D -d 0 ol | 0o 1 *1
v| _ p v,
o) 1 0 0 g U] 0 0 T
Y1
| & ] | o 1 -6 o] le | |o o] L A

(3.2)

Here, D = (IZZ/IXX) Y and the torque components (TX1’TY1) are normal-
ized by dividing by Ixx' The state vector of this system, as coordi-

natized in the unspinning reference frame (R), is

T

x4
x4 [ax o ¢ 9]. (3.3)

The driving torque consists of a control component and a disturbance com-

ponent designhated as

T .
g = ﬁ? T ] = El u ] + [% v ] s
Xl Yl X y X y

(3.4)

= - - . . - -
X, u and V1 are all functions of time where u and vy

are the control and disturbance torques respectively.

The vectors

To build an efficient attitude controller for this spacecraft, it
is necessary to estimate the yaw angle error ¢. If active damping is

to be provided, the values of the vehicle rates O% and O} must also
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be provided. The state estimator synthesis is begun by putting the dif-
ferential Egs. (3.2) in the form

—> -

¥=F + 060 + L,V ,

y = HX +w . (3.5)
Here, y is the electronic signal representing the scalar measurement
of the roll error 6; it is corrupted by various noise sources such as

earth oblateness effect, cloud cover, and system nonlinearities which

cause the horizon sensor signal to deviate from the ideal of Eq. (3.1).

This measurem?nt noise is designated by the scalar wX  The matrix ¥
is
H={0 0 0 © . 3.6
[ ts] (3.6)
The o term in H is equal to one when a measurement is made and zero

ts
otherwise. The measure@ent noise w 1is also multiplied by the O

function. Hence, the measurement y must be treated as a discretzssig—
nal.

If the control ﬁi the disturbance 51, and noise w are known,
the entire state x of the system (3.5) can be exactly reconstructed
because (¥,H). form an observable pair. The control ¥ is known be-
cause it is generated as a function of the state.

As seen in Figures 2.9~ 2.10 of Chapter 2, the major part of the

"inertially-fixed" torques acting on the spacecraft are oscillatory in

¥ .
The measurement errors from the horizon sensor pairs can be modeled as

biases plus white noise for a simple approximation, in which case the
order of the system is increased. This is done by adding the state
equations

. for every pair of horizon sensors. (Here, b; represents the bias error
of the ith gensor pair.) The H matrix must be modified to add this
bias to the actual roll angle 6. Further sophistication can be incor-
porated into the measurement error model by recognizing the existence
of orbital position dependent correlation characteristics. (See
Fitzgerald, Ref. 41). TFor the sake of system mechanization simplicity,
however, the measurement error is assumed to consist of strictly white

noise.
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nature, with periods which are small integer multiples of the orbital
period. The "body-fixed" torque also affects the vehicle attitude error,
and it too is a sinusoidal disturbance as projected into the Reference
(R) frame. These oscillatory disturbances can be modeled as states

with differential equations

v =W, Vo, . (3.7)

Here, wvi is the frequency of change of the ith component of the total
oscillating disturbance with respect to the (R) frame. Each pair of
the components of oscillating disturbances V; with unique frequency
wvi can be incorporated into the system matrix F of Eq. (3.5). The
resulting pair (F,H) will still be observable in the mathematical sense.
However, simulation has shown that poor results are obtained when attempt-
ing to build a filter to obtain these disturbances is addition to the
unknown attitude components. (This is true because the observability of
the system is dependent upon the presence of the orbital cross-coupling
term n (or &) which is quite small compared to the speed of dynamic
change governed by the parameter D.) The inclusion of disturbance
torques in the state equations also increases the complexity of the re-
sulting filter.

With the foregoing in mind, it is assumed that the disturbance
torques 55 to the system and the measurement noise w are stationary

1
white noise with statistics

EIV, (t)]1 = 0,
1 .
Elw(t)l =0,
E[x‘z’l(t) w(t)l = 0 ,
—> -
E[vl(t) vl(T)] = Q16(t - T,
E[wz(t)] = R, (3.8)
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2
Again, the expected value of w (t) 1is a discrete function. Ql is a

constant positive definite matrix and R1 is a positive scalar constant.
The initial state §70) is assumed to be independent of the stochastic
processes V;(t) and w(t).

It is desired that a filter be mechanized which will produce a con-
tinuous estimate of the unknown attitude errors so that these quantities
can be utilized in a continuous control law. Some form of the Kalman
filter (Ref. 42) which will minimize the square of the difference between
the actual X and the estimated X seems to be a logical choice for the
state estimator.

For power optimal control it will be seen that some active damping
is always required. Hence, the mechanization of the complete filter
which estimates vehicle rﬁtes in addition to altitude errors is considered
with the assumption that an adequate sampling rate is available. One

method which can be used to process the sampled input for the filter is

to hold this input between samples and use the regular continuous filter

SoFR LG+ 3(R) HiRil(Gs -8 . (3.9)

Here, the GS is the sampled-and-held measurement of 6 and the E%S

is replaced by 1.0 in H. The matrix 3(t) is the covariance matrix

of the error (E’— §) and satisfies the matrix Riccati equation

-1
1

it

B(t) = F I(t) + RF + Lo L - D()EE H n(t)

Z((O) =3 . (3.10)

For convenience in the immediate discussion, it is assumed that the or-
bital rate ¢ in Eqs. (3.2) can be replaced by the constant n so the
synthesis can be applied to a constant system. The effect of the time-
varying ¢ will be discussed shortly. With a constant system, the limit

z exists, where
[o0]
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and is found by setting X(t) = 0 and solving (3.10). The resulting
constant coefficient filter (which is equivalent to the Wiener filter

of Ref. 43) is

H>e

TR+ G+ £ HR I -8). (3.11)
o0 1 s

Because the satellite attitude control problem of concern here is a long-
life regulator problem, the initial transient performance difference of
employing a constant coefficient filter [Eq. (3.11)] as opposed to a
time-varying filter governed by Egqs. (3.9) and (3.10) is of little con-
cern. The mechanization advantages of the constant coefficient filter
are obvious.

By dividing Eq. (3.10) by R it can be seen that the solution

1?
2(t) depends solely upon the matrix Ql/Rl' The control vector u of
(3.9) and (3.11) is the ideal value of the control torque which will
differ from the actual U by unknown mechanization errors. In this
application, the matrices G and L1 are identical.

It was assumed that Ql/Rl was of the form

Equations (3.10) were solved by numerical integration for a wide range of
the ratio of variances q, for an example satellite. This example used
the parameters D = 1.5 sec“1 and n = 1.09 X 10 sec— which corre-
sponds to the mean orbital rate of fifteen revs/day. The steady-state
results are presented in Figure 3.6a with

T

T
= |z
[K1 K2 K3 K4] o H /R1

being the gain matrix of the continuous filter.
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The parameters D and n of the state equations
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Changing the parameter n to 2.10 X 10_4 sec—l, corresponding to
an orbital rate of 3 revs/day, changed the steady-state gains by less
than 2%. Thus, replacing the time~varying orbital rate term o by the
constant n is a justifiable simplification from the filter design
‘standpoint.

1f es is a piecewise constant inp&t and §A is continuously vary-
ing in Eq. (3.12), the estimated rates O% and O& lag the actual rates
o% and O%. This must be compensated for in the control law mechaniza-
tion because of system efficiency and stability reasons, and is discussed
in the last section of this chapter on simulation results. If the esti~
mated roll error 6 is synchronously sampled with eg, and this sampled
value is used in (3.12), no lag problem arises.

It was determined by analog and digital simulation that the sampling
rate required by the continuous filter (3.9) to obtain accurate estimates
of vehicle rates seemed to be the Nyquist rate dictated by the sampling

theorem (Ref. 44). The filter must reconstruct motion which in its un-

controlled form is

a = a cos Dt - O sin Dt,
X X0 yo

a =Q sin Dt + O cos Dt ,
yo

y X0
O%o
P = t% cos dt + 90 sin ot + Do (sin ot + sin Dt)
C)[o
I (cos ot - .cos Dt) ,
D+ 6
a o
0 = @ sin ot + 6 cos 0t + —>=— (cos 0t - cos Dt)
o . o D+ o
a (o]
+ —32_ (sin ot + sin Dt) .
D+ &
Here, o , & , ©®, and © are arbitrary initial conditions. Thus,
X0 yo o o

it is necessary that the roll angle € be sampled at least 2D times
per satellite rotation because the rate terms o% and Q§ oscillate
with the rate D. For a spacecraft spinning about its maximum axis, one

pair of horizon sensors can provide ample sampling speed for spin rates
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up to 0.5 rad/sec. For D greater than 0.5 sec—l, the horizon sensor
head must either be spun at least at the rate 2D secnl,or the number of
horizon~sensor pairs used must be greater than or equal to 2D.

A simple way to alleviate having to provide more than one horizon
sensor pair for the spacecraft is to provide an active control torqgue
based upon roll and yaw errors only (i.e. provide only active "position"
control). The attitude error estimates @ and @ from the Kalman fil-
ter would be correct in the average sense after the rate terms have been
dampened away by a passive nutation damper.

With a small amount of circuit logic, a statistically superior means
of implementing the Kalman filter exists. This consists of modeling
a continuous filter between sampling intervals and a discrete filter at

the time of horizon sensor input. That is, between samples, the equations

H e
1]

K + Ga , (3.122)

S=Fr + IF o+ LlQLI (3.12b)

are integrated to produce the estimate X. At the time of measuring the

roll error GS, the state is updated by the equation
A s ~
x(t+) = X(t)) + K6, - ), (3.12¢)
where the gain matrix K is
. -1
' T , T
K = z(t_)H H Zl(t_)H + R1> . (3.124)

The covariance is updated by

() = (I - KH) Z(t)) . (3.12e)

Here, (t ) and (t+) indicate the instances before and after the

sampling point.
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For the symmetric spinning spacecraft with a constant sampling in-
terval, the gain K also achieves a steady-state value so that only
Egs. (3.12a) and (3.12c) require mechanization. The values of the gain
elements of the same satellite studied in Figure 3.6a were found from
"Egqs. (3.12b,d, and e) with the sampling rate set at four times per satel-
lite rotation. The driving noise variance used was 0.25 X 10 sec_4.
Values of the measurement noise variance were varied with the results
presented in Figure 3.6b in terms of the variance ratios.

A remarkable similarity exists between the plots in Figures 3.6a-b
in that the gains of Figure 3.6b are about the same as those of Figure
3.6a at approximately two ordersof magnitude lower variance ratio. In
fact, computer results showed that increasing the sampling rate moved
the resulting filter gains closer to those of the continuous filter of
Figure 3.6a. This is expected because in the limit (as the sampling in-
terval becomes very small) the discrete Kalman filter becomes the con-
tinuous filter. It can be hypothesized that the steady state gain curves
associated with any sampling rate can be approximated by those of the
continuous filter shifted to some lower variance ratio.

The additional advantage of the hybrid mechanization of the filter
[Egqs. (3.12)] is that only one sample of the roll error needs to be taken
per satellite rotation in order to provide an adequate estimate of the
four elements of the error state. The only restriction is that the prod-
uct of the spin period (2n/$) and the parameter D not be close to an

integer multiple of .

" THE MINIMUM POWER CONTROLLER

Magnetic control torque is created by .passing current through coils
of wire fixed on the spacecraft. It is desirable that attitude control
gains be provided which minimize the power used by such a system, in addi-
tion to providing the required response characteristics. If more than
one coil of wire is used for control actuation, minimum power is obtained
by minimizing the time integral of the sum of the power used by each coil
with some constraint placed upon the attitude error. Time extends over

the period required to drive the attitude to the required orientation.
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Such a power optimum controller,which maintains the spin axis normal to

the orbit plane, is now developed.

The Optimal Regulator Problem

As defined in Ref. 45, a regulator is a feedback controller designed
to keep a stationary system within an acceptable deviation from a refer-
ence condition using acceptable amounts of control. This control can be

provided by choosing a control law which minimizes the performance index

t
£
1 T T
J =-2—f & Qz:?’+?f RO dt . (3.13)

Here, Q2 is a positive semidefinite matrix, Rz is positive definite,
and a represents the control effort.
For the case of magnetic control, the magnetic moment m of a wire

. . 2
coil, in Weber-m , is

where N is the number of turns of wire, Ac is the coil area, and ic
is the current. Thus, the control effort is proportional to the current
in the wire; minimization of the performance index Jf in (3.13) repre-
sents a power minimization because it is quadratic in T (and therefore
ic).

Reference 45 shows that the optimal solution of control for the

regulator is found by setting tf-to = =0 and finding the steady-state
solution to the Riccati equation ‘
. T -1 - 3.14
P=-PF - F P+ PGR, GT'P Q - ( )

with P(tf) = 0. The optimal control law is

ut) = -co?(t) , (3.15)
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where

Q
]
=]

‘and

Pm = P(~») .

The cost of driving an initial state E?O) to the origin is

—-T
= X

-;: (©) P X(0) . (3.16)
Because the pair (F,Qf) is completely observable, the symmetric matrix
Poo is positive definite, and the resulting system is stable.

One method of solving the matrix Riccati Eq. (3.14) is by numer-
ically integrating backwards in time until a steady-state solution
is achieved. This method is perfectly acceptable and results in the
correct solution for Pw, if one exists. However, it is a time consum-
ing procedure on the computer, and must be repeated for changes to the
system parameters. Because the spinning satellite studied here has the
property of complex symmetry,* an algebraic method is available which
can be used to solve the steady-state solution of Eq. (3.14). This

method is now presented.

The Algebraic Solution to the Quadratic Matrix Equation Governing

the Optimal Regulator of a General System Posseésing Complex

Symmetry

This analysis will be directed to fourth order systems because of
the immediate application and simplificétion of presentation. It is,
however, applicable to all higher order complex symmetric systems and

the extension to these cases is obvious.

* .
Complex symmetry is defined as the property in which a system of order

2n real state elements can be reduced to one of order n complex
state elements. This should not be confused with the idea of the
symmetric matrix in which a matrix A = AT,
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The general equations of motion of a fourth order system possessing

complex symmetry are

.e _ }n{ - -
X1 * g% T Prg®e * f0s¥ 7 Pos¥p = Yy

xz + alsxz + blsx + a,sx + b x. =u

1 0s 2 O0s 1 2

In matrix form, Eqs. (3.17) are

- a b 1
X1 als b1s Os 0s X1
X2l | P1s %15 Pas "%0s| | *2 . 0
X 1 0 0 0 b4 0
1 1
X 0 1 0 0 x 0
Define
X = Xl + JXZ 1]
u = uy + ju2 ,
AN .
Als =%t Jb1s ’
A .
Big = 8ps * IPgg

Then (3.18) becomes

or

X =Fx + Gu

which are complex state equations.
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(3.17)

(3.18)

(3.19a)
(3.19b)
(3.19¢)

(3.194d)

(3.20)
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Y

The optimal control gains for a regulator system in which the de-

sired final state x(tf) = 0 are found from the steady state solution

(at time to = -») to Egs. (3.14).

For the complex state equations, the matrix Riccati equation (3.14)

must be formulated in Hermitian form
. % -1 x
S=8F-FS-Q+ SGR GS , (3.22)

*
where the notation F refers to the complex conjugate of the transpose

*
of F. The matrix S has the property that S = S.
The steady-state solution to (3.22) is defined as

S(-=) e Sco , (3.23)

and the states are defined as

>
wy

x , (3.24a)

. (3.24b)

The éost to bring the initial complex state §7to) to zero is

—d

_ Loy s R :
J, = 5 X(to) Smx(to) . (3.25)

£

Noting that
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where T is the indicated transformation, Eq. (3.25) becomes

1457 ¥
Jo =52 () T Tz(t ) ,
L1 Fwyp (3.26)
2 o
Define
*
p. 21 sT. (3.27)
1 ©
With
11 S12
s = . (3.28)
[oe]
S12 S22
(where s12 is the complex conjugate of 512) P1 becomes
S11 . 9%11 S12 IS1p
“I811 S11 79812 Sig
P, = _ _ . (3.29)
S12 J812 Saa I8y
"I%12 f12 TI%2p Fgp |

Because the cost J:f is a quadratic form, (3.26) becomes

o

N

]
N

—T T, o
zO (P1 + Pl)z0 R



S50

S11 0 Re(slz) —Im(slz)
0 s11 Im(slz) Re(slz)
_ h . (3.30)
Re(slz) Im(slz) 522 0
~-Im(s, ) Re(slz) 0 522

L 12 .

which has the required real symmetric form. Instead of solving for ten
unknowns by integrating the ten equations of (3.14), only four unknowns
exist. The equations of (3.14) can be manipulated, so algebraic solutions

of these four unknowns are obvious. Because of the control law (3.15),

the variable 322 can be eliminated from consideration. Define
.
Ky = %11
. A
Kp1 + JKp2 = 855,

Using the system and distribution matrices F and G defined by Egs.
(3.19)-(3.21), Eq. (3.22) can be formulated. For optimizing the per-

formance index

t

J = L .[ g <2 <2 + xz 2 + u2 + uz dt
£°2 J ] o] 1 ¥ %59 17 % '
(3.31)
the matrices Q2 and R2 become

’ 0
9
Q2 = o

£
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Employing (3.22) and setting § = 0 results in the equations

2k - a,K) - K2+ q =0,
Tk, T ek TP K Fsy, T KR, =0
- boKv + blel - aleZ - Kvaz =0,
- 20K+ DKy < Ky - Koy =0

Algebraic manipulations of these equations result in

3 2 2 2
2K K
pl + (b1 +oay + 4ao + ql) pl
(a.b.b + a’a - b + YK
A e e LN L P RS
2, + b2 ) = 0 (3.32)
349 F Py * 497 =T :
K = -a, + ,\/az | + 2K (3.33)
v ™™ 174 pl °’ '
K _ = -b —N/bé +q - K. - 22K (3.34)
p2 = o o " % pl & pl * :

The cubic Eq. (3.32) has a closed form solution of which the correct
root is chosen on the basis that all elemehtsof Soo are real. With
Kpl known, Eqs. (3.33), (3.34) can be solved for. Kv and Kp and the
optimal control law will be

u, = -Kvx1 - Kplx1 - szxz , (3.35a)

u, = -K X_ + K . x, - Kp X_ . (3.35b)
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Control of the Spining Satellite

As an immediate application of the foregoing method, consider Egs.

(3.2) which are the equations of motion of a symmetric spinning satellite

— ..~ — 9
-d ~D+n ~Dn d nl|- 1 0
¢ p p ®
g D-n  -d -4 n -Dn 6 o 1| "
_ p P N
h H
¢ 1 0 0 0 0] 0 0 uy
0 0 1 0 0 0 0 0
e aawad aael —— R — —

(3.36)

where constant n is substituted for . Comparing (3.36) with (3.18)

the following andlogies are apparent:

ao = Dn
b0 = dpn
al = dp
b1 = -D+n

Thus, Eg. (3.32) becomes

3 2 2 .2 2 -

2Kpl + (D° 4+ 2Dn + n + dp + ql)Kpl + 2(an1 qz)Kpl
2 .2 2

- = 3.37

(dpqz + dpn q, + qlqz) o, ( )

and (3.33) and (3.34) are

: 2
= - 2K 3.38
KV dp+Jdp+q1+ pl ( )
K _=~dn —,/(d n)2 + - Kz - 2DnkK (3.39)
p2 ~  p p 9z pl pl ’
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Solutions to (3.37) - (3.39) as utilized in Eqs. (3.35a-b) represent
the optimum power control law from the standpoint of minimizing the
index (3.31).

As an example of this method, solutions to (3.37) - (3.39) were
found for a spacecraft with the product of the moment-of-inertia ratio
and spin rate D = 1.5. Values of the damping coefficient dp ranged
from 10_4 to 10—1 sec ~. The mean orbital rate n was set to values
of 1.09 X 107> sec™ and 2.18 X 10° " sec™-. The results are delineated
in Figure 3.7. Here the parameter ql was set to zero and q, was
given the five values shown. The differences in the optimal gains due
to variation of the mean orbital rate n were undistinguishable.

Using this algebraic solution to obtain all the data required to
produce Figure 3.7 required about 2 percent of the computer time re-
quired to find solutions to the matrix Riccati equation by numerical
integration for one set of values of the parameters dp and ql. The
cubic equation (3.27) was easily solved by synthetic division.

The choice of which particular set of gains to use from Figure 3.7
depends upon the designer's choice of the nutation damper. To obtain the
response desired involves the choice of the damping coefficient dp and
the parameter - As can be seen from Figure 3.7, the position gain
K is relatively small compared to K

pl p2’
mechanical damping term dp does not cause Kv to markedly decrease.

Also, the increase of the

The control gains obtained above are based on state variables
(@,é,@,@). Replacing (@,é) by (O%,Og), ‘the control law (3.35) be-

comes

= -K O - - - .40

u. Kv e Kpl (Kp2 nKv)G , (3 a)

u =-Kad + (K ~ nkK )Q)— K e . (3.40b)
y vy p2 v pl

It is essential to realize that mechanization of this optimum con-
trol assumes the presence of a filter for estimating values of the system
state. The combined system is optimal by the certainty equivalence

principle.
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FIG. 3.7. OPTIMUM GAINS OF THE CONTROL LAW (3.40) FOR POWER MINIMIZA-
TION OF A MAGNETICALLY CONTROLLED SPINNING SATELLITE AS A
FUNCTION OF DAMPING. The parameter 45 is chosen to
achieve the desired response,
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In the following development, Egqs. (3.40) are not mechanized ex-
actly. However, these equations do serve as a basis for choosing con~
trol gains which optimize a magnetic control system's power requirements

as averaged over an orbital period.

MAGNETIC IMPLEMENTATION OF THE CONTROL LAW

So far, the discussion has been mainly concerned with the continuous
application of an optimum control law based upon a quadratic performance
index and upon input from a Kalman filter. This controller could be
mechanized by any continuous method and provides only the pointing con-
trol signal required by the attitude control system. It is now necessary
to consider how this control will be implemented maghetically, and to be
cognizant of the spin control requirement.

Magnetic torquing is made possible by applying a voltage to a coil
of wire fixed in the spacecraft. The current in the wire causes a Lorentz
force to exist between each element of moving charge and the local mag-
netic field of the earth B. (This phenomenon is discussed in Ref. 46).
The effect of the total force results in a torque T) being applied upon
the spacecraft which can be expressed as

T=m x B

X . (3.41)
Here, ﬁ> is the generated magnetic dipole moment of the vehicle-fixed
coil; it is directed nofmal to the plane of the coil and obeys the right-
hand rule with respect to current flow direction. The magnitude of m
is

|m] = NA_ 1 (3.42)
where N is the number of turns of wire in the coil, Ac is the planar
area of the coil, and iC is the coil current. By having three orthog-
onal coils on the satellite, the magnetic moment m may be directed in
any orientation (except that, of course, no resulting torque can be

produced parallel to §3.
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In the previous section on minimum-power optimal control, two
idealized expressions [Egs. (3.40)] were derived for applying control
torque components about the vehicle yaw (§p) and roll (§p) axes.

For full attitude control, the capability of applying another torgque
~component about the spin axis (EB) also needs to be implemented. How-
ever, for this study, the active control applied is restricted to be
maghetic. Thus, a means must be provided for using Eq. (3.41) to achieve
the full torque T required (at least in an average sense). But, it

is only a rare occasion during any orbit when the local value B of the
magnetic field is so oriented that a magnetic moment m can be generated
which will produce all three components of the required T,

It is usuvally not necessary to maintain the exact control on the
spin speed as that required for pointing the spin axis of the satellite.
The spin-speed tolerance must be maintained only to the extent that the
mechanized pointing control (based upon nominal spin speed) works correct-
ly. Therefore, in this section, concentration is first directed toward

achieving magnetic pointing control, and the spin component of the desired

control is ignored. It is assumed that the spin speed is nearly at its
nominal value.

A pointing control scheme is defined which uses only two orthogonal
coils with axes perpendicular to the spin axis. This scheme is referred
to as Mode 1 control. During this mode of control, a spin component of
magnetic torque exists which may not be in the desired direction.

It is necessary to have the ability to apply control which main-
tains the spin speed within some tolerance, so logic is developed for
using another mode (Mode 2) of magnetic control which removes the spin-
speed error. This mode simply reverts back to Mode 1 control if Mode
1's spin component of torque is correctly directed. If the Mode 1 direc-
tion is incorrect, pointing control is supplied by the Z-axis coil which
does not produce a spin component of torque.

A third mode of control (Mode 3) is provided to correctly initialize
the spin speed and to serve as a backup in case spin spéed conéinues to
deviate beyond some bounding tolerance. The mechanization logic for

combining these modes is specified.
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Finally, in this section, it is shown that the three coils required
to mechanize the full three-mode control can be replaced by a single

coil (with its axis skewed to the spin axis) and a nutation damper.

Pointing Control

Equations (3.40) express the optimum control torque required along
the §p and §p axes of the body's nonspinning reference frame. These
components are used to define the desired pointing control torque 7?”

D
which is

T =T % +7T_5
D Dx p Dy 'p
From (3.40) the resulting torque T due to an applied m must

lie in a plane which is perpendicular to the field vector ﬁi For power
efficiency, it is also desirable that the magnetic moment m lies in
this plane. The vector geometry involved here is delineated in Figure
3.8. The direction of ﬁ? is chosen such that the lateral component of
i? coincides with the desired T;. This is accomplished by solving the

equations

= B - mB
Tpx my Z zy '

TDy

]

mB -mB
Z X X z

n.B=0 (3.43)

for the components of ﬁi The solutions to (3.43) are

2
n, = (TDyBX TDXBy)/B ?
= B -~
My (mz X TDy)/Bz !
m = (mB +T_)/B . (3.44)
y zy Dx z
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PLANE
PERPENDICULAR

0 B

._-)
FIG. 3.8. VECTOR GEOMETRY OF MAEyETIC TORQUING WHERE B IS
THE MAGNETIC FIELD, m IS THE GENERATED MAGNETIC
MOMENT, AND T. IS THE DESIRED TORQUE.

D
Equations (3.44) are fundamental to the mechanization of magnetic atti-
tude control and have been used in many versions sihce appearing in
Ref. 2 (White, et. al.)
Mechanization of Eqs. (3.44) will result in a torque which has a
component along the spin axis, which is apparent from Figure 3.8. This
spin component's magnitude will be

T = mB ~mB . (3.45)
z Xy y X

Because of the random nature of the desired control torques and the
change in direction of the magnetic field component in the satellite’s

lateral plane, the orbital average of (3.45) should be zero.
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Notice that Eqs. (3.44) require the division of terms by B2 and
BZ- The magnetic field of the earth is roughly an earth-centered dipole
(See Appendix A) and for conceptual purposes can be approximated as a
simple dipole with axis antiparallel to the earth's spin axis in the
time-average sense. (See Figure 3.9.) 1In this study, the orbit inclina-
tions considered are between 20° and 70° and the satellite spin axis points
toward the northern side of the orbit plane. As a consequence, the satel-
lite's spin-axis component Bz of the magnetic field will always be posi-
tive. Thus, there is no problem of sign reversal and the divisor going

to zero in (3.44).

EARTH
SPIN AXIS

&

FIG. 3.9. ORBIT PASSAGE THROUGH THE EARTH MAGNETIC DIPOLE
FIELD.

On the other hand, the actual division process required by Egs.

(3.44) is not in itself desirable. Figure 3.10 indicates the variation

of the reference axis (R) components of §> over three orbits of typical
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INCLINED AT 45° WITH 300 km ALTITUDE OF
PERIGEE.

resonant satellites. The magntidue of BZ fluctuates over two orders
of magnitude for the 3 revs/day orbit.

One method previously employed (See Refs. 13 and 14) to simplify
Egqs. (3.44) (which generate the magnetic moment) for satellites in cir-
cular orbits has been to use just a single spin-axis coil. Over the cir-
cular orbit, [Eﬁ varies by about, at most, a factor of two; so (1/B2)

was replaced by a constant K

0B’ which resulted in adequate control torque.
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The magnetic signal for this single-~coil controller is

m = KOB(BX TDy - By TDX) (3.45)
from the first of Egs. (3.44). Equation (3.45) also results from crossing
B into T; which is a permutation of (3.41). This equation represents
the most common mechanization of magnetic attitude control of spinning
spacecraft studied and applied to date.

Use is made of Eq. (3.45) later, as a part of the overall attitude
control mechanization. The effect of using the constant KOB over a
highly eccentric orbit is also explored.

The advantage of using (3.45) for the control law mechanization is
that no unwanted spin component to the forque exists, and spin modulation
of the applied voltages is not required. The chief disadvantages are
that such a control mechanization offers no means of controlling spin
speed and that the actual resultant torque is not in the direction of
T; specified by (3.40). Because the goal of this research is to find
a system which provides both precision control and spin-speed correction,
use of a single spin-axis coil alone is not satisfactory.

The % coil used the lateral component (normal to the spin axis) of
magnetic field to produce torque. This component is seldom aligned in
the proper direction to produce a torque parallel to the desired T;.
For precision control, the alternative is to use two orthogonal coils
(X and Y coils) with dipole axes in thellateral plane. This allows
producing two magnetic moments which react with the spin component of
the magnetic field (BZ) such that the pointing torque is parallel to
i?. This is the primary mode of spin-axis orientation considered in

D

this chapter. The ideal magnetic moments along the g and ?L axis

for such control are found by setting m to zero in Eqs; (3.44).

The ideal control required to produce T; still necessitates divid-
ing by Bz. For mechanization simplicity, it is assumed that this divi-
sion process can be eliminated by replacing (1/BZ) by the constant KBz
which is the orbital average value. (An approximation to this average
value can be obtained from Figure A.2 in Appendix A). The resulting

torque components found from Eqs. (3.44) and (3.41) are
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T =K B T ’ (3.46a)

X Bz z Dx
Ty = KBZ BZ TDy , (3.46b)
TZ = -KBz(ByTDy + BXTDx) . (3.46¢)

Again, under such a scheme, the spin-torque component TZ should average
to zero over several orbits if no disturbance torques are present.

Replacing the factor (l/Bz) by the constant KBZ raises two
questions. First of all, the actual pointing control torgque components
under such a scheme are directly proportional but seldom equal to the
desired components because they have the time-varying factor BZ in
them. As is seen, this applied torque is no longer always optimal (in
the minimum~-power sense). Thus, there is no longer a reason to conclude
that the control system is always stable.

The second question is whether control torque of such time-varying
magnitude can drive the attitude error to zero and maintain it there in
the presence of disturbances. These two questions are investigated after
the overall magnetic mechanization of the control system is completely
defined.

The magnetic moments required for implementing (3.46) are

T T _KBZ TDy ’
my - KBz TDx ’

m =20, (3.47)

where TDX and TDy are specified along the nonspinning reference axes.
Because of vehicle spin, the actual voltages applied to the orthogonal

X and Y coils must be proportional to

=
]

m cos Yyt + my sin VYt ,
m' = -m sin ﬁt + my cos Yt (3.48)
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where m_ and my are as given in (3.47). Equations (3.47) to (3.48)
represent Mode 1 (primary) control.

No measurements of the magnetic field are necessary to actuate the
controller as is seen from equations (3.47) because only those orbits
are considered which always have a positive value of BZ. However, it
is necessary to have a Z-axXis sensitive magnetometer for such a system
in order that correct control estimates be put into the Kalman filter.

The primary mode of maghetic spin-axis orientation defined by Egs.
(3.47) seems to provide better pointing accuracy than many other all-
magnetic control systems studied previously. This point is discussed
later in the section on system performance. In addition, the X-Y coil

system provides a means for spin control which is now developed.

Spin Control

If the spin speed deviates away from the nominal value, this will
be detected by variations in the periodic signal coming from the horizon
sensors. The desired control torque to correct such a deviation A@

might be either

T, = “K_ &l (3.49a)

or

T, = -K_ sen(a}) , (3.49b)
when [Ail exceeds some deadband value. There are two ways in which
a similar spin control can be actuated.

The first type of spin control(occurs due to the pointing control
Egs. (3.46). One can see from (3.46¢c) that a spin torque will usually
exist from application of this primary pointing control. Thus, one can
incorporate logic into the control system such that pointing control
by Eqs. (3.46) is actuated only when the resulting spin torque is in
the desired direction. This is done here when the spin-speed deviation
|A$| exceeds some threshold; this mechanization is considered as the

primary means of spin control and is labeled Mode 2.
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The other way that spin control can be enacted is by applying
voltage to the X and Y coils in such a way that the resulting mag-
netic moment is normal to the component of the magnetic field in the X-Y

plane . That is
m = K B sgn lIJ 3.50a
g A ’ ( )

m = -K, B sen N (3.50b)

Applying (3.50a-b) will result in a pointing disturbance. It is
therefore desirable to use the second method of spin control only in
the event that spin-speed deviation approaches the point where serious
degradation to pointing control will occur. Use of this spin control
is implemented by logic known as Mode 3.

Partial pointing control can be maintained during spin-speed control
by use of a spin-axis coil and the control law (3.45). A philosophy is
taken in which the X and Y coils are used for position control during
normal operations, (i.e. portions of the orbits where the spin speed is
adequately close to the nominal value.) During those periods when the
X and Y coils cannot be used for pointing control, the Z coil is used
for partial control.

During operation of the Z coil for pointing control and during an
X-Y spin control phase, the system must measure both the yaw and roll
components (BX and By) .of the magnetic field. Measurements can be
taken by a magnetometer with a single sensitive axis lying in the plane
of the Z coil (perpendicular to both coil and spin axes). The magneto-
meter output needs to be sampled and held twice per spin revolution for
obtaining both Bx and By. During spin control using (3.50a-b) or
(3.46¢), the magnetic moment which is aligned with the sensitive mag-
netometer axis needs to be zeroed during sampling periods to prevent
interference from the generated magnetic moment.

Because application of spin control by (3.50a-b) résults in pointing
deviation, it is necessary to investigate how this deviation can be mini-

mized. For control efficiency, it is desirable that this control action
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be centered around the perigee position of the orbit where the average
lateral magnetic-field component will be largest.

The magnetic-~field vector B can be thought of as roughly describing
a cone around the §L axis of the local frame once per orbit. Thus, if
the magnetic moment m is constrained to be 90°out of phase with lateral
component of §> for spin control, the resulting lateral torques due to
the presence of BZ will be of the form

N

T
X

T cos(nt + O?),

=3
il

T sin(nt + O%), (3.51)

Here,

For no further control-induced disturbance torques or damping, and for
the phase angle o% equal to zero and T a constant, the resulting
values of roll and yaw error are found by solving Egqs. (3.2) with (3.51)

substituted for TX and Ty' This results in the yaw and roll angles

=573 [cos nt - cos Dt] ,

g - DT sin nt  sin DT
"5 |

.52
P 5 (3.52)

D - n

Here, the fluctuation of 6 is substantial because of the small divisor
n. Therefore, to minimize the generél pointing deviations (in the average
sense), the applied spin control torque should be applied over a 180°
segment of the orbit centered about the perigee point. The point in the
orbit where this control is enacted can be based upon the value of orbital

rate 0 obtained from the horizon sensors.
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Combined Control with System Logic

It is now necessary to formulate a means of combining the previously
developed pointing and spin control laws into a single controller that
can be mechanized with appropriate logic. This can be done by defining

two constants Cdl 9 which represent boundaries of deadbands

associated with the spin speed V. Let Cd1 be the value of spin speed

deviation lA&l beyond one should provide some sort of spin control. Let

nd C
a d

Cd2 be the value of IAWL beyond which it is mandatory that spin control
action be taken. Let Cp be the value of orbital rate ¢ which indi-
cates the spacecraft is within 90° of the perigee point. Then, suitable

logic governing the voltages applied to three orthogonal coils would be:

- < Al .
Mode 1 (-C., < AV < Cd,)

= - T
mx KBZ Dy s
= T
my KBz Dx
m =0 . (3.47)
Z

Mode 2 (C ., < |av] <c

= - BT = - J
a. If sgn(TZ) = sgn (BxTDy v Dx) sgn(AV) ,

use Mode 1.

b. If sgn(TZ) = sgn(Aﬂ),
mx =0,
my =0,
m =K (BT -BT_ ) . (3.45)

z OB x py ¥y Dx
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Mode 3 (|AV] >c,)

a. If o< Cp, use Mode 2.

b. If ¢a>C_,

- P
mx = KZ By Sgn(Allf) ’
my = —KZ BX sgn(AYy) , (3.50)
m =K (BT -B T ). (3.45)

4 OB x Dy y Dx

Once Mode 3b is entered, the control is constrained to remain in
this mode until the point where & = Cp is again reached. The,constant
KZ is chosen so that application of Mode 3b drives the spin speed well
within the Mode 2 range. Large angle error buildup is prevented by sim-
ultaneous use of the Z coil.

If the gains are set properly and care is exercised during design
and construction of the satellites, Mode 3 will not be required during
normal operation. However, it should be mechanized for use during initial
spin-up or for the case where spin speed changes but no pointing error
accumulates.

Measurement of the three magnetic field components during Mode 3
can be made with a three—-axes fluxgate maghetometer described in Ref. 47.
The magnetometer's sensitive axes must be mounted so that no interference
is created from the magnetic field produced by the control coil. When
the magnetic components mX and my are both being generated, this in-
terference can best be prevented by a time-sharing procedure. Here, the
colil currents are cut off momentarily once or twice each cycle of space
craft spin. At this time the magnetié field measurements are sampled and
held during the controlled portion of the cycle. Care in vehicle design
must be taken to insure that errors due to ferromagnetic materials on the

vehicle are acceptably small.
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A New Method of Magnetic Control Application - the Skewed Coil

It is possible to simplify to a great extent the mechanization of
the control system suggested in the previous section. This can be done
by replacing the three coils with a single coil skewed at 45° (for example)

to the spin axis as shown in Figure 3.11la. A further simplification is

/\
Zg
NOMINAL SPIN AXIS
m
MAGNETOMETER
SENSITIVE
7 AXIS
1/
Y4 45°
B 7]
11 \
I
i
coiL 8

LANE

FIG. 3.11a. GEOMETRY OF SKEWED COIL IN A SPINNING
SPACECRAFT. The magnetometer sensitive
axis lies in the plane of the coil.

AVERAGE
™ MAGNETIC
MOMENT

-

~ .
L]
FIG. 3.11b. PATH OF MAGNETIC MOMENT VECTOR o
FOR ROTATING SKEWED COIL WITH CURRENT
DIRECTION SWITCHED EVERY 180°.
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to use only one magnetometer with its sensitive axis in the plane of the
coil as indicated. For such a system, if the coil current magnitude and
direction are constant, an average magnetic dipole moment is generated
along the spin axis. If a constant current has its direction reversed
every 180°, the average maghetic moment is in the X-Y plane pointing in
the direction 90° from the switch points, as is delineated in Figure 3.11b.
Thus, one has the ability to generate all three components of the desired
magnetic dipole ﬁ? averaged over a spin cycle of the satellite.

For minimum power in the skewed coil during Mode 1 control, it is
necessary to apply a voltage signal which is not a full square wave, but
a pulse train. The total current in the coil for generating the dipoles
m and m is the sum of two pulse trains shown in Figure 3.12. The

value of current iX in the coil to produce a magnetic moment m_ along

the yaw axis is

i =m /[ 2 NA cos(e )]
X X Cc [e]

X-SIGNAL

TIME

Y- SIGNAL .

___.42€°<__ 260“_ TIME

CURRENT (amps)
<

TOTAL COIL CURRENT

i TIME

FIG. 3.12. TOTAL SKEWED-COIL CURRENT TO ACHIEVE AN
AVERAGE m AND AN AVERAGE my DURING SPIN.
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for the coil skewed at 45°. Here the angle §§L corresponds to the
product of one-half the off period of the pulse train and the spin rate.
Other skew-angles can, of course, be used depending upon the amount of
use whiéh is made of the Z-component capability. To minimize ii re~

(¢} [o]

which has a solution of ed@ ¥ 23°. It can be shown that minimization
of the total power of the applied voltage indicated in Fig. 3.12 again
requires minimization of ii + i?, where ix and iy are the two
currents passed through the same coil. Thus, the previous analysis of
the minimum-power optimal controller for the orthogonal coils is also
valid for the skewed coil. |

It is illustrative to compare the power requirements of three
orthogonal coils and one skewed coil. Assume that the total weights of
the coil systems are the same, that the areas (Ac) of each are equal,
and that each coil of the three-coil system has one-third the number of
turns N and electrical resistance (rc) as that of the skewed coil.
Then the power Pw required by the two lateral coils to generate a con-

stant lateral moment m is
2
P = 6 mr /(NA ) watts.
w c c
The power requiréd by the skewed coil averaged over a spin period is

. 2
(it - 2¢ y)x mr
: o) c
Pw = 5 — 5 Watts.
' 2 cos (e¥)  (NA)

For ﬁd& of 230, this last expression is about
- 2 2
P 6.9mr /(NA ) wWatts.
w C C

Hence, the skewed coil requires about 15 percent more power when in

Mode 1 operation.
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On the other hand, if the moment is desired along the EB axis,

the skewed coil's power is
2 2
p =2mr /(NA ) Watts.
w c c
The power consumed by the smaller Z coil is
2 2
p =3mr /(NA )" Watts,
W c c

or 50 percent greater for Mode 2.b operation.

A disadvantage of the skewed-coil arrangement is that it tends to
generate the required magnetic components in the X and Y directions
averaged over one spin cycle. It has poor ability to generate control
torques which fluctuate faster than spin rate such as the wobble-damping
terms. Therefore, the skewed-coil probably requires a mechanical nuta-
tion damper. (Typically, magnetic controllers are so supplemented any-
way.) However, the packaging advantages of a single coil and single-axis

maghetometer seem to make this a system worthy of consideration.

CONTROL SYSTEM STABILITY

In the previous two sections, a control system has been described
which removes the spinning satellite's error state, with the resulting
applied torque being optimal (minimum power usage) in a time average
sense. It remains to determine what conditions guarantee that this con-
trol system will be asymptotically stable for all time over the entire
magnetic field environment of the orbit.

It is known from the theory of optimal control that if the gains
are chosen so that the applied torqué is always optimal, the resulting
system is asymptotically stable. However, for the simplified magnetic
implementation considered here, the applied torques vary directly with
the magnitude of the magnetic field. This magnitude varies by more than
two orders of magnitude for the highly eccentric orbits considered in
this thesis. (Refer again to Figure 3.10.) Thus, one cannot conclude

stability over the entire orbit.
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Three control torque configurations require consideration here.
One might classify these as satellites with pure active damping (i.e.,
no mechanical damper), pure passive damping, or a combination of damping
methods. The pure passive damping case includes the skewed-~coil con-
‘troller where the applied magnetic torque is for angular position control
only.

There are also two methods of applying pointing control which
have been developed in the previous section. These methods include
using the X and Y magnetic moments as in Mode 1 control, and using the
Z magnetic moment as in Modes 2b and 3b. If stability can be established
for each of these control modes individually, then stability of the en-
tire system can be concluded.

The following section provides the analytical means for obtaining
at least the necessary conditions required for system stability. The
stability analysis methods of Lyapunov and Kryloff-Bogoliuboff are em-

ployed for this task. The two control modes are investigated individually.

X-Y Coil Control

The limits on the allowable gain variations in the mechanization
of the X-Y control mode can be established by the use of the Lyapunov
"second method". Before this theory is applied, however, some of its

theorems are presented which are of direct use.

Lyapunov Stability

A scalar energy-like function VZ(Eit) is a Lyapunov function
if it satisfies the following conditions in an open region Qr about

the origin:

1) Vz(;,t) is defined in 0 for all t > 0;

2) V,(0,£) =0, for t>0;

3) Vz(iit) dominatefaa certain positive definite W1(§3; that
is, wl(i?)g_vg(x,t) for all X in Q and all t > 0;
4) Vz(?,t) <0 in Q. For X = F(¥,t), \'/z(x—’,t) = OV/dt +

grad V-F.
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The following theorems (Ref. 48) are associated with the Lyapunov func-

tion.

Theorem 3.1. If there exists in some neighborhood Qr of the origin

a Lyapunov function V(iit), then the system is stable at the

origin.}

Theorem 3.2. If V¥ (x,t)< 0 in O  for all t >0, then the stability

is asymptotic provided that V (Eit) S_W2(§§ where W2(§3 is another

£ .
positive definite function. If Wl(§3 approaches infinity as
liél approaches infinity, then the system is said to be asymptoti-

cally stable in the large (ASIL).l

Theorem 3.3. If Vz(iit) with Vz(O,t) have continuous first partials

with respect to each element of §> in Qr, Vz(iit) is positive
definite, and Vz(iit) is able to assume positive values arbi-

trarily near the origin, then the system is unstable at the origin.l

This theory can be applied to linear systems as is stated in the

following theorem (Ref. 49).

Theor

(Ref.

em 3.4. The equilibrium state X=0 of a continuous-time, free,
linear, stationary dynamic system §)= FX is asymptotically stable
and the eigenvalues of the matrix F are less than some constant
by if, and only if, given any symmetric, positive-definite matrix
Qr’ there exists a symmetric, positive-definite matrix Mr which
is the unique solution of
(FT - u, DM+ M'(F - u ) =-q

1 r r 1 r

=T = . i i

and “1 3_0. Moreover, X er is a Lyapunov function for this

dynamic system.l

This theorem has recently been extended by Moore and Anderson

50) and used to generalize the "circle criterion" for establishing
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the stability of linear systems with time-varying feedback elements. An
adaptation of this new method (presented here for the first time) begins

by stating the following theorem.
- Theorem 3.5. Consider the system with state equations

= FX + Ga = (F - GK_(t)H) X,
- HY , (3.53)

where I? is the input vector governed by the time-varying gain

matrix Kg(t) and is expressed as

w(t) = K (£ F )

The matrices (F,G,H) are constant. _

The matrix Kg(t) = diag.‘{kl(t), ky (£), .., kp(tﬁ. satisfies

the condition K, < K.(t) < K
1- g -2

{kll, Kygs =+ klp} and K, = diag {k21’ Kpos +oes kzp} are

constant and K2 - K1'> 0, idi.e. positive definite. Now, if a

bounded, symmetric, positive definite matrix Mr can be found

for all t > O where K1 = diag

which satisfies the equations

- T T T T , o
Mr(F—pII—GKlH) + (F —p11~H K .G )Mr = —NrNr (3.542)
T . EA
MG=H/2-NP (3.54b)
T rr
PP = (K, - K ) (3.54c)
r 2 1 e

where Hy < 0, ‘then the system is stable in the large. If p1~<0,
the system is asymptotically stable in the large.

Proof.

Consider the Lyapunov function
= =T = :
V) =% M_X (3.55)
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which is bounded and positive definite. 1Its time derivative is

T T T T T
X (F -H K ()G )Mr?+ X M (F - c;Kg(t)m;?

From (3.54a),

—T
X

<t
I

T
(—NNT+2;¢M + M GK.H + HK,GM )%
rr 1r r 1 1 r

T
2T (K (£)6TM + M 6K _(£)DE .
g r r g
Substituting (3.54b),

. T T T T.T
Vz = X (—er\rr + 2“1Mr - H (Kg(t) - Kl)(H/2 - PrNr)

T -
- (H/2 - NrPr)(Kg(t) - KI)H)X .

Completing the square, this becomes

'__—>T T__ _ TT_~ _ -
VZ = =X (N} Pr(Kg(t) Kl)H) (Nr Pr(Kg(t) Kl)H)x

ETH R (8) - KBS + 20 % M %
g 1 1 r

+ 2Tk (t) - KPP (K (t) - K.)EX .
g 1" rr g 1

Substituting (3.54c) into the last term produces

. >T T T T =
VB ==X (N, - Pr(Kg(t) - Kl)H) (N, - Pr(Kg(t) - Kl)H)x

ST T _ _ -1 —
-X H (K, Kg(t)] (K2 K) (Kg(t) - Kl)Hx + zulvﬁ

This expression is always at least negative semidefinite for Hy < 0. For
Hy < 0, it is always negative definite. Thus, the function V(§3 of

(3.55) satisfies the requirements for a Lyapunov function and the solution
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for a suitable ,Mr satisfying Egs. (3.54) insures that the system is

stable.l

Corollary 3.6. Let it be given that a system is descibed by Eq. (3.54)

and that Eq.(3.54) can be solved for a positive definite Mr with
the constant Hy > 0. Then the system is unstable by Theorem 3.3.1

This powerful theorem provides a means by which the stability of a
linear constant system with time varying gains may be investigated. The
establishment of system stability requires the solution of Egs. (3.54) for
a bounded symmetric positive definite Mr. Equations (3.54) can be com-

bined to yield
M (F4LI-0.5G(K +K )H) + (F—p I-0.5H" (K +K, )G )M
p 2™ 1 27" r

T T
+ MrG(K2~K1)G Mr + 0.25H (Kz—Kl)H =0 ,

(3.56)

which is a matrix quadratic equation.

The use of Theorem 3.5 and the solution to Eq. (3.56) can be applied
rigorously to determine stability of a system in which the matrices (F,
G,H) are constant. However, if elements of the system matrix F are
time varying, the system can still be correctly analyzed using the above
theory under certain circumstances. These conditions are that the time~
varying elements may be removed from the F matrix and be included in the
GKg(t)H matrix; i.e., these dynamic elements can be treated as time-vary-
ing control gains adhéring to the form given in Theorem 3.5. This is
true in particular for time-varying elements in a system possessing com-
plex symmetry. For the axisymmetric satellite in elliptic orbit studied
here, this technique may be used to handle the time-varying orbital rate

g appearing in the F matrix.

Range of Time~Variable Gain for Mode 1 Stability

Consider the skewed-coil controller with passive damping. Here,

the damping terms of Eq. (3.40) are lumped in with the nutation damper
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so that the desired magnetic torques are

=
]

px = Kp1® ” Kpef o

T - e .
Dy Kp2(p Kpl

From (3.46) the actual position control gains are

=k (DK 9+ K0

= —kl(t)(—szcp+ K_9) ,

pl

= B . i i
where kl(t) KBz Z(t) Let the orbital rate be defined as

o =n + kz(t) n,

If n, is the apogee value of ¢ and (n1 + nz)

1

then kz(t) varies between 0 and 1 in value. Thus,

(F—GKg(t)H) may be written from Eq. (3.2) as (with G = I)

p— nney —
-d -D 0 0 k, (t) 0 0
o} 1
D -d o o0 0 k, (t) 0
F-GK_(t)H = P -
0
1 o 0 n 0 kz(t)
0 R 0 0 0 0
| 1 4 L
Therefore,

T, = Ky (K o+ K, 0B (t)

T, = ~Ky, (K 9+ K 10) B (1)

(3.57)

(3.58a)

(3.58b)

(3.59)

is the perigee value,

the matrix,




& - - = - (07
2 dp D kl(t)Kpl kl(t)sz
a D -d k, (t)K -k, (t)K o
y p 1 pl 1 pl y
= . (3.61)
& 1 0 0 n1+k2(t)n2 0)
1 - —
2 _-o n, kz(t)nz 0 ] _g 3}
The time varying gains kl(t) and kz(t) are bounded by
0 S kl(t) S km , (3.62a)
0 <k, (t) <1. (3.62b)

The problem then is to determine the maximum value of the constant km
in Eq.(3.62a) for which a positive definite Mr exists which satisfies
(3.56). If such an Mr can be found, then the system (3.61) is stable
for all time and for any time histories of kl(t) and kz(t) as bounded
by (3.62).
The solution of (3.56) for Mr can be found by using the method

of Potter (Ref. 11). Consider the matrix quadratic equation

MCM_ +BM +MB +A =0, (3.63)
where Ar and Cr are‘symmetric and Br is a square matrix. Define

the matrix

b = . (3.64)

-1
Assume Tr is a matrix which produces Tr P3Tr in Jordan canonical

form. Then one can write
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Br Ar T1 T2 T1 T2 Ja Jb
= (3.65)
—Cr —Br T3 T4 T3 T4 0 Jc
If T3 is nonsingular, a solution to (3.63) is
M= T Tt (3.66)
r 13 ’
The condition which guarantees that T; exists is that Ja be asso-

ciated with the eigenvalues of P with positive real parts.

3
As can be envisioned, this method of solution as applied to (3.56)
is somewhat involved. Some effort is saved by realizing that the matrices
of (3.56) come from a system with complex symmetry so that (3.56) may be
reduced to a 2 X 2 Hermite form.
As a practical matter, the problem of solving for an Mr which
satisfies (3.56) can be greatly reduced because it can be shown that
the time-varying element § of (3.59) has an insignificant effect upon
the stability of the system (3.61). This is demonstrated by presuming

it, tentatively, and then performing numerical checks. If ¢ is set to

a constant n, then the matrix product GK2H becomes

:GK_H = (3.67)

e o o wIi

] @ © = O]
o
=
o
1
=
=

By setting by = 0 and using the matrices defined by (3.67) in (3.56), _
the property of complex symmetry provides the solution of Mr from the

following algebraic expressions:

2
2(—m1dp + mz) + kmm1 =0,

+ kmm m_ =0,

- 0.5 kaplm -~-dmn, - (D+n)m3 + m4

1 p 2

- 0.5k K _m, + (D+n)m_ - d m
m 2

= 0
p2™1 pta TR ’

13
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2 2 2 2
-K_m,2A - K _nm 0.25 =
o102 o2s + (Kpl + Kp2) +m, + mg o .
(3.68)
Here, Mr has the form
B 0
My o T3
A 0 m1 --m3 m2
Mr = .
m2 —m3 m4 0
m3 m2 0 m4
Mr is positive definite if
my >0,
2 2
mlm4 > m2 + m3 (3.69)

A systematic way is thus established for determining the limit of posi-
tion gain variation that assures stability of the spinning satellite due
to time variations of the magnetic field. The constant km is raised
in magnitude in Eqgs. (3.86) until a solution can no longer be found which
satisfies Eqs. (3.69). _

As an example of this method, the maximum value. of km allowable

for a satellite with parameters

D=1.5 sec - ,
d =1.26 X102 sec™ !,
p
-3 -
n=1.09 X10 sec 1, (a typical perigee value)
K =2.85 x 10°° sec 2,
pl
K _ =3.5X10° sec 2 ,
p2
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was determined to be 5.398. 1If the orbital rate n is set to 2.18
10—4 sec—1 (a typical apogee value), the limit on km becomes 5.392.
These values of km are so close that the slow variation of § between
berigee and apogee values can be seen to be unconsequential. The assump-~
tion of constant ¢ is thus a valid one.

The limit on km for this system can be approximated by use of

Routh's criterion. Referring to Figure 3.7 it can be seen that K

p2
is more than an order of magnitude larger than Kpl for most values of
the damping term dp. Thus, if Kpl is set to zero, kl(t)Kp2 is set
to K, and n, + kz(t)n2 is set to n in (3.61), the conditions for

stability are
2d_ >0 ,
Y

@2 + a2)d_/(D-n) > K ,
P P

[(D-—n)d (D2+d2 —n2) + 2nd3]/[(D—n)2 + dz] > K .
P P P p

and

From these, the bound on K 1is approximately

Dd >K =k K (3.70)
P m

p2 ’
which agrees very closely with the results of the Lyapunov test in the
example. This is quite remarkable when considering that BZ can vary
over a large range in any mannér. Stability can be assured in such a

system by maintaining K small enough with respect to the variable

p2
BZ or by increasing the nutation damper coefficient dp for highly

. . *
eccentric orbits.

*It is interesting to note that the fourth order system studied here
(with 0 = n) can be reduced to two second order coupled Hill's
equations which have been extensively discussed in the literature
(see Ref. 52). Defining the complex variables 0O = O + jo& and
N =9+ jO produces the complex equation

fl + Edp + j(n—D?]fi + [nD + jnD + K(tXKpl-ijz)][i =0
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This method can also be applied to the satellite which is actively

dampened .

In this case, the matrix H is

Kv 0 Kpl sz
H = ,
0 KV —sz Kpl

and no nutation damper term dp is present. The resulting four alge-

braic equations Ewhich are modifications of (3.68i]are

2 2
- m -
2( 3K3KV 1 T mz) + K4m1 + 0.25 K4Kv 0,
- - K K - K . =
KSKplm1 3 vm2 (D+n)m3-+m4-+ 4m1m24-0 25K4Kva1 o,
- - . K =20
K3szm1 + (D+n) K3Kvm3+K4m1m3+K4m1m3+0 25 }{4KV 02 ,
2 2 2 2
- 2K3(Kplm2+Kp2m3) +K4(m2+m3) 4+0.25 K4(Kp1+ sz) = 0,
with
Ko = (& +Kk)/2,
and

Examples using these equations with gains Kv’ Kpl’

olated from Figure 3.9 indicate that the system is always stable for the

‘and K extrap-
P2

lower bound k1 nonnegative. Thus, the upper bound can approach an

Then with w, o= I‘le and ¢, = —[dp + j(n—D)] /2,

2
(D+n+jdp _
w1 + —_— + K(t)(Kpl - jK

this becomes

Yiw, =0 .

2 P2 1

Further, by letting wy; = X+Jy, this equation results in the two
coupled Hill's equations with K(t) periodic. Modeling the variation
of the magnetic field as a sinusoid results in two coupled Mathieu
equations.
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infinite magnitude with the system remaining stable. This seems rea-
sonable because the actual damping torque increases proportionally with
the increase in the position torques.

One can conjecture from the above investigation that a satellite
which utilizes a combination of passive and active damping will be stable
over the same regime of magnetic fields as a satellite which is totally

actively dampened.

Z-Coil Control

During Mode 2 and 3 control, the magnetic moment applied to the

Z coil (or in the average Z direction) is
m =K _ (BT -BT_) . (3.45)

Z OB x Dy y Dx

For the satellite with active damping, the resulting kinetic equations

of the vehicle rates are
écx N -DOCy - mB
= -Dozy - KOBBy [BX(—Kvay + sz,cp— Kple)
- By(—Kvax - Kplcp - sze)] . (3.71a)
& =Dad +mB ,
= DaX + KOBBX [BX(—KVOéy + szq) - Kple)
- By(-KvOlX - Kp1CP - sze)] . (3.71b)

These are obtained from (3.40) and (3.41) with sz used for (sz—nKV).
As can be readily seen, Eqs. (3.71) do not possess complex symmetry on
which the Lyapunov function generating procedure used in the preceding

section relied for a straightforward algebraic solution.
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Kryloff-Bogoliuboff Method of Averaging

The main difficulty, of course, with using the Lyapunov technique
is the problem of finding a suitable function. For the Z-coil control
law, this problem was indeed the situation Except for a special case
which will be indicated shortly). For this control mode, a different
approach is used which establishes the necessary conditions for system
stability. This approach, known as the method of averaging, was used
by Wheeler (Ref. 13) to predict the response characteristics of his Z-
coil controller and control law. The method is formulated as a modifica-
tion of the procedure established by Kryloff and Bogoliuboff (Ref. 53)

and consists essentially of the following steps:

1. PFind the solution to the uncontrolled equations of motion.

2. Take the time derivative of these equations. From these
derivative equations, solve for the time derivatives of the
amplitudes (or parameters) which appear in the uncontrolled
equations. These derivatives will be functions of the first
time derivative of the system states.

3. Substitute the actual controlled state equations (the first
order differential equations) into the above equations.

4. Determine the time average of the resulting equations by inte-
grating them over the shortest periodic function's time period.
This is especially valid if the control torques are relatively
weak and are long~period functions so that over the short period
investigated they can be treated as constants. For magnetic
control, this is the case. '

5. By inspection, determine if the resulting average time rate of
change of the parameters investigated are decreasing for stab-
ility.

The analogy between this procedure and the Kryloff-Bogoliuboff averaging

technique for investigating stability of an equation of the type
. 2 .
X+ x + ef(x,x,t,e) =0

is evident.
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Necessary Conditions for Stability

The method is now applied to the system with rate Egs. (3.71la-b).

Define the angles

El = Dt + EO ’
nl = nt + no ,
Cl = nt - go ,

where §0 and N, are phase angles based on initial conditions. Then
the uncontrolled motion of the spinning satellite described by Egs. (3.2)

(with dp = 0) 1is described by

o = .
- Aa cos gl (3.72a)
O§ = Aa sin 51 s (3.72b)
AOﬂ
® =B, cos N, + 5o [sin gl + sin Ql] ) (3.72¢)
AO(
6 = By sin N, + oo [-cos gl + cos Cﬂ . (3.72d)

It is desired to determine the time response of the amplitude parameters
Aa and Ba for the controlled situation. Taking the time derivative

of (3.72a-b) and solving for Aa yields

A = o% cos gl + O§>51n gl s

Il

-DO 104 i
(-D . + Tx) cos gl + (D L+ Ty) sin §1 ,

i

mZ(BX sin gl - By cos gl) . (3.73)

The value of m from (3.45) [with values of TXD and TyD from (3.40)]

and values of O;, O&, ¢, and @ from (3.72) are all substituted into

107



(3.73). The resulting equation is averaged over the short period 27/D
holding Wl and Cl as constants. This procedure results in the average

time rate change of the amplitude Aa which is

K K
: __oB _ Tp2) 2 2
AOﬁave - 2 G&z D+n> (Bx + By) Aaave ) (3.74)

This equation is stable for KOB > 0 and KV > sz/(D+n).
Now attention is turned to determining the time rate of change of
the parameter Ba- Repeating the procedure above, the time rate of

change of Ba is

» 1 . d -
= - e (X i
B, = ®cos N - -~ ( . + A, sin Cl + Ap cos Cl) cos 1,
+ é sin M, - L (—d + A cos §, - A sin ¢ ) sin M, .
1 Dm U x T f%a 1 o 1 1

(3.75)

Substitutions are made for the controlled (O%,Oe,w,e) as before, and

again the resulting expression is averaged over the short period 2xn/D.

The resulting time average rate of BOhve is
K
: OB 2 2 2
= - —B8B K i - i -
BQave Den Ohve[ p2(BX cos 1y + By sin nl) Kpl{BXBy(s1n n, ~ cos nl)
B - B) si }] £(A_ A (3.76)
+ (B y sin 1, cos 7, ¢|+ a2 - .

Here, f(Aa,Aa) is linear in Aa/ and .Aa, and it disappears. As éan
be seen in (3.76) the quantity in braces multiplied by Kp1 does not
consistently contribute to the stability of Ba; in fact, it may produce
instability for certain trajectories through the magnetic field. Thus,
during Z-coil control one should set Kp1 = 0. Therefore, the necessary
conditions for stable Z-coil control with active damping are
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KV > sz/(D+n) (3.77)
=0 . (3.78)

The resulting control law (3.45) is
= -K O [0
m =K B [-K [+ K0 + BO(K O+ sze)] (3.79)

which is essentially the controli law used by Wheeler.
With this hindsight, a Lyapunov function can be formulated for the

resulting system. This is
1 2 2 2 2
S o’ - o - y
vﬁ 5 {(sze + KV x) + (szcp Kv y) + sz (Kv (D+n) sz)(cp + 6 )}

(3.80)

with Q?: -mi. Vk is always positive definite by the constraint (3.77).
This function is a simple modification of the onesused by Wheeler to
establish stability of his control law for a satellite in a circular
orbit. Thus, with the gain constant Kp1 = 0, dufficiency conditions
are produced which insure stability of the actively dampened system. Al-
though asymptotic stability cannot be concluded because there may be
trajectories for which mZ is identically zero, it seems rather doubtful
that such a condition could exist for any length of time because of the
complexity of the actuai magnetic field. (See Appendix A).

Using the averaging method on the passively dampened system leads

to the condition that

K K
. OB p2 2 2
= - - m——i 3.81
Oave dp 2 (D+n) (BX +’By) Aoave' ( )

There can be noted a marked similarity between the stability constraint
which is inherent in this equation (3.81) and the constraint (3.70) placed
upon the gain variation for the passively dampened case of Mode 1. The ac-

tual constraint is formalized as
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d (D+n) > K __K B2/2 3.82)
p OB p2 o .

for system stability, where Bi = max(Bi + Bi) encountered during the
orbit.

The response of the parameter Ba for the passively dampened case
is the same as that for the actively dampened case (3.76).

In summary, the special case in which damping is done entirely
actively has a legitimate Lyapunov function for guaranteeing stability.
Necessary conditions are provided for the stability of passively dampened
satellites by averaging. Sufficiency conditions must rely upon adequate

computer simulation.

GENERAL SYSTEM PERFORMANCE

Having now defined a magnetic attitude control system and having
specified the limits of stability for that system, it remains to evaluate
the general satellite control performance for a variety of situations
which would be encountered in the actual environment. The satellite con-
troller-estimator and dynamics have eight states, are subject to a time-
varying maghetic field, control torque, and disturbance torgque, and have
a sampled roll error measurement. Because of the complexity involved
then, this performance evaluation generally has to be conducted by use of
both analog and digital computer simulations. The results of these sim-~
ulations and the accompanying analysis are described in this section.

In the digital simulation, the full ninth-order spherical harmonic
model of the earth's magnetic field described in Appendix A was utilized.
The nonlinear effects of orbit eccentricity and time-varying spin rate
were also included. The simulated disturbances were those environmental
torques described in Chapter 2. All three modes of magnetic control
previously discussed were investigated.

The analog simulation concentrated upon performance .studies of the
system in Mode 1 control. Here, the EB component of the magnetic field
was assumed to be constant. The time-varying § due to orbital eccen-

tricity was approximated as a constant-plus-sinusoidal term. Disturbance
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torques were also approximated as constants and sinusoidal terms. The
Z-coil portion of the controller used in Modes 2 and 3 were not simulated
on the analog computer because it is essentially the same as the system
studied by Wheeler (Ref. 13). This reference contains a complete analog
evaluation of the Z-coil controller used for a satellite in a circular

orbit.

Transient Response With and Without the State Estimator

The attitude control system which has been considered has been based
upon the presence of an optimum state estimator from which the vehicle
rates and the yaw error are determined. An alternate controller could
be one in which the magnetic control law is based upon the roll error

measurements Gs only, i.e.
T = -K e (3.83)

The body rates would be controlled by the passive nutation damper. Such
a control is described and evaluated by Sonnebend in Reference 9.

The Mode 1 control law (3.40) developed here was compared directly
with that of (3.83) in the transient situation with no disturbance tor-
ques. The comparison was made on an analog computer by measuring the
response time required to drive the spin axis to within 0.1° of the
nominal from various sets of initial conditions. The trajectories in the
®~8 plane for such comparisons are shown in Figures 3.13 and 3.14.

As was mentioned before,'a roll disturbance'torque is mathematically
observable for the satellite using horizon sensor error measurements.
Therefore, an evaluation of the system trying to estimate roll torque was
also made at this point. This involved mechanizing a five-state esti-
mator (Kalman filter).

Figure 3.13 indicates the transient response trajectories of systems
with a five-state estimator, a four-state estimatox, and no estimator for
initial conditions of ¢ = 6 = 0.15 radians, O% = ,05 rad/sec, and ay:
0. It can be seen that the trajectories resulting from state estimation

go more directly to the origin than one without the estimator.
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INITIAL
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FIG. 3.13. TRANSIENT RESPONSE OF THE POINTING ERROR FOR THE SATEL-
LITE WITH AND WITHOUT A STATE ESTIMATOR AS PART OF THE
CONTROL SYSTEM. The five~state estimator also deter-
mines the roll disturbance torque.

It can also be seen that the trajectory of the five-state esti-
mator has a large amount of fluctuation as compared to the four-state
estimator. This erratic behavior was generally the case for arbitrary
sets of initial conditions. It was obéerved from monitoring the out-
puts of the five-state estimator that this mechanization is extremely
sensitive to gain setting deviations. Small deviations caused large
fluctuations in the transient response of the estimate of the roll dis-
turbance. This affected the response of the rest of the state variables
as seen in Fig. 3.13. This degree of sensitivity is, of course, undesir-

able. The constant roll torque estimation is not that important to the
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~—— ESTIMATOR
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FIG. 3.14. TRANSIENT RESPONSE OF THE SATELLITE POINTING
ERROR TO VARIOUS INITIAL CONDITIONS. Response
with and without the state estimator in the
control system is compared.

type of satellite studied here. It is also desirable to be able to
mechanize the control system and its associated filter using mostly
analog circuitry with components which may have some deviation from
nominal values. Therefore, the rest of the study is concerned with
only the four-state estimator.

The sensitivity of the five-state estimator is partially due to the

weak orbital cross coupling which exists between the roll and yaw

113



channels of the Kalman filter. The noisy horizon sensor measurements
could also compound the problem.

As would be suspected, the transient response time of the system
with the state estimator was significantly superior to that of the sys-
tem with no estimator. The transient times of a satellite with param-

eters

> -1
D=1 V¥/I = 1.6 sec ,
ZZ XX
-3 -1
n=1.16 X 10 sec s
2
I = 10 kg -
xx g m o,
and the nonoptimal gains
-2
K, =0.03 - 0.1 sec ’
p2

K = 0.1 secl |

were simulated; A comparison of response times for four sets of initial
conditions with and without the estimator is presented in Table 3.1.
The improvement from estimator application is evident. Response trajec-
tories from Runs 1 through 4 are shown in Figure 3.14.

Rapid response is impqrtant for two reasons. Because disturbance
torques are going to move the satellite spin axis away from normal to
the orbit plane, fast response means that the average deviation is less.
Also, because the control torque depends upon the magnetic field avail-
able (which fluctuates considerably in eccentric orbits), it is desirable
to apply full control whenever the magﬁetic field strength is sufficiently
high. However, without an estimator, detection of the full error (i.e.,
at that region of the orbit where the error is mostly in roll) might
conceivably occur only when the magnetic field strength is low. Thus,
without an estimator (which serves as a memory of the error), it could
take much longer to drive the system to the null position, and the aver-

age steady state error could be larger.
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Table 3.1. COMPARISON OF TRANSIENT RESPONSE TIMES FOR DRIVING THE
POINTING ERROR OF THE SATELLITE TO ZERO. Directly compared are
times of a system with and without a state estimator (Kalman
filter). Different initial conditions are used. Magnitude of
the position gain in the control law is also varied.

In%t%al Position Time-to-Origin
Conditions Gain K (sec)
Run (rad) _._p2
Number (sec 2) With Without
@o 90 Estimator Estimator
1 0.18 O 0.03 1700 6300
2 0.18 0.15 0.03 1100 7300
3 0 0.15 0.03 700 6400
4 -0.18 0.15 0.03 1200 3200
5 0.18 O 0.1 800 700
6 0.18 0.15 0.1 1100 > 18000
7 0 0.15 0.1 1100 > 18000
8 -0.18 0.15 0.1 900 >18000

Steady Performance in the Presence of Disturbance Torques

Probably the most important criterion upon which to judge the
merits of an attitude control system such as the one studied here is
its steady-state or average performance in the presence of environmental
and vehicle attitude disturbance torques. By performance is meant the
average pointing accuracy achievable, or the spacecraft's ability to stand
off these disturbance torques.. Unfortunately, this performance measure-
ment is difficult to assess properly in the presence of the complex en-
vironment of the satellite in the highly eccentric orbit. The only way
valid prediction of precise performance can be made is by use of exten-
sive digital computer simulations covering a wide spectrum of orbits
and satellite parameters. The cost of such an undertaking is prohib-
itively high for a study such as this, so a different tactic was pursued.

It was felt that if worst-case environmental torques could be de-
fined, then an upper bound on the pointing accuracies achievable from
this satellite attitude control system could be made directly. Because

the spin component of the magnetic field (Bz) ig time-varying, a natural
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question arises as to where the ratio of the disturbance torque magni-
tudes to the available control torque is worst.
Figures 3.15a-b are plots of the worst yaw and roll components of

disturbance torques acting upon the satellite. Also plotted on these
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BZ ~ spin component of magnetic field

FIG. 3.15. PRIMARY TORQUES ACTING ON A SPINNING SATELLITE IN AN
ECCENTRIC 3 REVS/DAY RESONANT ORBIT WITH PERIGEE ALTI-
TUDE OF 300 km. Also shown is the spin component of
the magnetic field. (a) Yaw torques; (b) Roll torgues.
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curves is the magnetic field component Bz. Parameters of the satellite
and environment are the same as those used to generate Figures 2.9 -2.10
of Chapter 2, except that the orbit has an eccentricity of 9.6367 corre-
sponding to a resonant orbit of three revolutions per day. As can be
readily seen, (and is not unexpected) the disturbance torques seem to
decrease in magnitude proportionally to the decrease in magnitude of BZ.
Thus, it seems as valid to check the performance with respect to perigee
torques (or for that matter, torques of a circular orbit at perigée al-
titude) as to any other point on the orbit. The approach taken is to assume
that the satellite is in a 16 rev/day orbit with each individual torque
component at its worst value in relationship to the BZ magnitude.

The torques which are of most concern are the aerodynamic torques,
the torques due to a magnetic dipole fixed along the spin axis, and the
kinematic torque due to the reference axis moving because of orbit plane

precession. These torques can be modeled as

Aerodynamic: MAX C1 + C2 cos nt.

Magnetic dipole: MMX

C3 cos nt ,

MMY C4 sin nt

R ic: M
Kinematic KX

il

i

05 cos nt ,

Mpy

- i t .
C5 sin n

Values of the constants used for simulation were

C1 = -10 N-m ,
C, = -10 ~ N-m ,
C, = -4 X10 " Nm ,
c, =-8 X10 " N-m ,
05 =2 X 10 N-m ,

The constants C1 to C4 represent a center-of-mass off;et of about
5 cm (at 300 km) and a magnetic dipole of about 2.5 AMp-m , which are
both quite conservative.

Again runs were made with and without an estimator. Gains used
were sz = 0.003 and dp = 0.01. The largest fluctuations were in the
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2
yaw error ¢, and are presented in Table 3.2 (with IXx = 10 kg-m

and D = 1.6 sec'l).

The four types of disturbance torques simulated were:

1 The total aerodynamic, magnetic, dipole, and kinematic torques;
2 Magnetic dipole plus kinematic torques;

3. Dipole torque only; and
4

Kinematic torque only.

Results are presented in that order.

As would be expected, a large steady yaw torque tends to produce
the largest yaw error. Because this type of torque is mathematically
unobservable, it seems reasonable that the control system would be less
adapted to cope with the yaw torque's presence than some other torque
source.

Also seen in Table 3.2 is the fact that large steady yaw torques
tend to produce larger yaw fluctuations for the system with the state
estimator. However, if constant yaw torques are reduced by better
vehicle construction, the yaw fluctuations are decreased by using the
state estimator.

The steady-state value of a yaw error due to a constant yaw torque
can be found by applying the Final Value Theorem to the transfer function
between yaw torque input and yaw angle output. With no state estimator,

the steady-state value of the yaw error is

DnT
X

(P =

ne 2. .2 2
ntd +D - dnK _-
¢ p ) P p2

With the four-state estimator this becomes

T
X

CP =

e 2 2 2 2
n{d +D)+K _=-2d nK
( p ) p2 P p2

2 2
N (—Kan-szpn~+K2Kp2 K3Kp2D-K4dpn-K4D n-+K4dep2)
n p2 2 2 2 2 2 2 _
(dpn deBn + Dn K3D n + Kan Kldpn)
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1 2 3’ 4
is set to zero. TX is the magnitude of the disturbahce torque. These

Here K., K, , K and K are the estimator gains and the gain Kp1

steady-state values are approximately

1
(pnegTXBH’
: < Kz >
X p2
P =—0— \Dn + ——
e 2 Dn
K
p2

2
For typical values of gain sz [that is, Dn << sz/(Dn) ] these two
are essentially equal. To reduce the steady-state yaw error due to con-
stant yaw torques requires either reducing the yaw torque itself by

better vehicle design or increasing the vehicle angular momentun.

Performance During Mode 3 Control

It was desired to determine if a pointing angle error is decreased
by using a maghetic moment along the spin axis during Mode 3 spin con-
trol. Recall that during Mode 3, the lateral magnetic moment is con-
strained to be normal to the lateral component of the magnetic field for
spin speed adjustment. This gives rise to a pointing disturbance torque.

To study performance during Mode 3 control, a digital computer pro-
gram was developed which contained the Euler equations of motion, the
estimator, and the complete control logic. Also included were the ninth
order magnetic field model developed in Appendix A and the entire dis-
turbance torque program as developed in Chapter 11,

Several simulations were made with this program with different

initial conditions and the control law

5 . °
m = -10 By sgn(AVy) ,
5 .
my = 10 BX sgn(AY) ,
m = 3.5 x10°(B 0+ B @) ,
z X y
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during Mode 3. Here, the magnetic moments are measured in Amp—m2 and
: . 2
the magnetic field components are measured in Wb/m~. The parameters

-1 -
dp and D were 0.0126 sec and 1.5 sec 1. Mode boundaries were

SPIN-SPEED ERROR, AY (rad/sec)

Cdl = 0.01 rad/sec and Cd2 = 0.02 rad/sec. A typical response plot
is shown in Figure 3.16 where the control goes from Mode 2 to Mode 3 to
Mode 1.
3.0
YAW ANGLE ERROR
0.02 = 2.0
@
z5
S
0.0IF 1.0
a
ul
L
O..gg 0 | | I | | ] !
P 400 800 1200 600 2000 2400 28Q0
o TIME (sec)
-
<
-1.0-
ROLL ANGLE ERROR
-2.0~
MODETMODE MODE‘MODE
2 3 3 I

!

FIG. 3.16. TYPICAL RESPONSE OF SPIN SPEED, ROLL, AND YAW ERRORS DURING
MODE 3 CONTROL.

In all cases run, the total pointing error never grew larger during
Mode 3 control. It appeared that the spin speed could be controlled
within 0.03 rad/sec. of the nominal value, or 3 percent. This spin con-

trol was dependent, of course, upon the ability of the horizon sensor to

measure spin speed that accurately.

Miscellaneous Simulation Studies

Some other points were also studied on the analog computer involving

the stability of the control system. A determination was made of the
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effect of a sampled roll error being used as the input to a continuous
filter. Some studies were made of the stability effects due to the
control torques of Mode 1 being subject to saturation and deadband non~-
linearities. Finally, an investigation was conducted concerning the
effect of modeling the orbital rate ¢ as a constant in the filter.

Each of these studies will be discussed in turn.

The Estimate Lag Problem Due to Roll Error Sampling

If the sampled roll error is fed into the continuous estimator
(filter), then the estimated vehicle rates &X and ’dy lag the actual
rates O% and 03. If the damping portion of the control law has com-

ponents

- -k O
TDX KV x ’

- -k O .84
TDy v % (3 )

poor damping characteristics result. In the case where the parameter
D was equal to 1.5 sec—1 with three samples per vehicle rotation, in-
stability actually occurred. This lag problem could be corrected by

either sampling the estimated roll error 5 before comparing it with
the sampled measurement GS or by introducing a lead angle A  into

J.
the damping control law, i.e.

l = —K a COS /) - a S‘l n 4\ N
~ . ~ .

Figure 3.17 shows the results of damping on O% using Egs. (3.85) in-
stead of (3.84) in the control law for a system which samples the roll
rate four times per rotation. Here the lead angle AE is 60°. The"

improvement is obvious.

The Inclusion of Saturation and Deadband in the Control Feedback

During Mode 1 control, it may be desirable to place a deadband

about the nominal spin axis attitude so that power requirements might
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3.17. TIME PLOTS SHOWING THE SAMPLING EFFECT ON
ACTIVE RATE DAMPING. Here, the sample rate is
4 times per satellite spin period. With no lead

angle in the active control, the rates are only
partially dampened.
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be further lowered. Also, because there will always be power limitations
upon each coil of wire of the control system, each feedback channel of
control is subject to saturation. The question arises as to what effect
these nonlinearities would have upon the stability of the system.

It has been shown (Ref. 54) that any linear system which has a nor-
mal optimal feedback control law based upon a quadratic loss function
can have a great deal of nonlinearity in the control mechanization.

Using a multivariable Popov criterion, it has been shown that the actual
mechanized control of each channel can be anywhere within the shaded
portion of Figure 3.18a and still result in a stable system. Thus, types

of linearities which automatically result in systems that are still

stable include those containing saturation or relay control with dead-
band as shown in Figures 3.lb-c.

Portions of the saturation-plus-deadband nonlinearity considered
here (Figure 3.18d) do not lie above the line with slope 4. Therefore,
computer investigations were made of the satellite system with different

values of the parameters d and S, of Figure 3.18d. The deadband

b
-2
db on the applied control ranged from O to 0.025 sz sec . The satura-
tion level sa was varied from 0.05 Kp2 to 0.1 sz Sec_z. The nonlinear

system was always stable (or achieved a stable limit cycle about the or-

igin) when the linear system was stable.

The Modeling of Orbital Rate as a Constant

Because the satellite is in an eccentric orbit, the time rate of
change of the truly anomaly o is time varying. This rate was con-
sidered before in deriving the Kalman filter gains and the optimal con-
trol gains. The variationwas shown to have a negligible effect on the re-
sults. It also had little effect upon the development of a Lyapunov
function for providing the range of daﬁping to insure Mode 1 stability.
One might suspect from these previous conclusions, then, that this orbi-
tal rate o could be adequately modeled as a constant in the estimator.
In other words, one might use a constant n in the estiﬁator equations
instead of updating a variable G based upon readings from the horizon

sensors. The advantage from such a conclusion would, of course, be that
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great simplification could be realized in mechanizing the estimator
(replacement of multipliers by constant gain potentiometers).

Such a conclusion cannot be made, however. Figure 3.19 shows the
analog computer response of a model plant similar to the satellite with
mean rate n equal to 8 X 10_4 rad/sec and actual rate 0o equal to
8 x 10 % raa/sec + 7 x 107 cos (8 X 1074 t) rad/sec. Modeling of &
ag a constant-plus-sinusoid is crude, but the results indicate what
could happen from the actual effect.

Figure 3.19a shows the response of a system starting at apogee
(0 = 10—4 secnl) and initial conditions of @ = -0.075 rad with both
linear and nounlinear (saturation-plus-deadband) feedback controls. The
linear case goes directly to the origin and the nonlinear case achieves
an irregular limit cycle about that'point. Figure 3.19b has the same
initial conditions but starts at perigee (0 = 15 X 10"4 sec ). Here,
it can be seen that the linear feedback system achieves a small limit
cycle which is not centered about the origin and the nonlinear system
goes through an erratic motion before finally achieving an irregular
limit cycle about the origin.

Other initial conditions produced equally confusing results, al-
though in all cases, the trajectories ended up in the vicinity of the
origin. Stability in such a situation cannot be concluded, however. It
would seem advisable to take advantage of the horizon sensor's ability

to determine 8, especially for the nonlinear feedback mechanizations.

SUMMARY

This chapter studies a new theoretical design of a magnetic three-
degree-of-freedom attitude control system which maintains the spin axis
of an axisymmetric satellite to within less than 1° of normal to the
orbit plane in the presence of worst-case disturbance torques. The spin
speed of the satellite is kept within 0.03 rad/sec or 3 percent of the
nominal value by the same control system. The control system is capable
of operating at orbit inclinations between 20° and 70° and eccentricities

of from O to 0.7, with perigee between 300-500 km altitude.
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A Kalman filter is utilized to estimate yaw error and vehicle
rates from horizon sensor roll error measurements. Analog computation
demonstrated a significantly improved performance of the system with
the filter.

The control law was chosen to minimize the power requirements of
the magnetic controller. The determination of the control law gains
was made utilizing a new method of algebraic solution of a quadratic
matrix equation. This general method can be applied to any system of
equations with complex symmetry.

The control law is implemented with magnetic coils and possibly a
nutation damper. Control can be actuated via either three orthogonal
coils or a single coil whose plane is skewed 45° with respect to the
spin axis. The unique ékewed-coil concept requires oniy a single mag-
netometer and has certain packaging advantages. The magnetic control
is applied by a logic system broken into three modes. These modes en-
able the system to achieve and maintain correct spin speed in addition
to correct pointing attitude with minimum constraints placed upon the
magnetic field vector. These constraints are that the spin component
(BZ) always be positive and that a lateral component be present for
spin control.

For simplicity, the actual magnetic mechanization of the control
law is based upon using the average value of the magnetic field. This
mechanization results in a time-varying controller that provides ques-
tionable stability. A new method of generating a Lypunov function which
establishes the stability bounds on the magnetic field variation during
Mode 1 control is utilized. Constraints of Mode 2 (Z-coil) stability
are specified by use of the Kryloff-Bogoliuboff averaging procedure.

Analog and digital simulations are used to verify the stability
of the control system, to evaluate. its performance, and to determine
control accuracy in the presence of envirommental disturbance torques.
The overall control system concept, while simple in design, is capable
of achieving greater control accuracies for longer periods of time than
previously studied all-magnetic designs utilizing the horizon sensor.

The only added electronics sophistication is the Kalman filter and mode
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logic which can be easily mechanized with present-day technology. Of
course, the reliability of the added electronics must be carefully
evaluated.

The fundamental limitation on the achievable pointing accuracy of
the controller studied in this chapter is its inherent ability to with-
stand a constant yaw torque. This type of disturbance torque is unob-
servable from the horizon-sensor scheme. The ability of the control
system to reduce steady-state errors is also limited to some extent by
the noisy character of the horizon-sensor measurements and the weak
cross coupling that exists between the roll and yaw channels of the
Kalman filter.

In Chapter IV, a satellite example is studied whose error sensor
has the ability to measure simultaneously the equivalent of both the
roll and yaw errors. These measurements are assumed to be extremely
accurate and a strong cross-coupling term exists between channels. For
this set of circumstances, it will be seen that very good estimates of
the disturbance torques can be made. These estimates enable the con-

struction of a control system with vastly improved performance.
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CHAPTER IV

PRECISION MAGNETIC ATTITUDE CONTROL OF A SPINNING

-SYMMETRIC STAR TRACKER

In this chapter, a magnetic attitude control system is studied for
precisely pointing (at a star) the spin axis of an axisymmetric satellite
in a polar orbit. The limitations of this control system are explored
to the extent that a direct comparison of its performance can be made
with other types of precision attitude control mechanizations. Partic-

ular points investigated in this chapter include the following:

1. A continuous control law is derived which keeps the spin axis
aligned accurately in the presence of normal disturbance torques
associated with this particular orientation of the satellite.
The key to this control law is that the major portion of the
disturbance torque acting upon the satellite is observable.

2. A magnetic actuation system is devised which mechanizes the
pointing control law while maintaining satellite spin speed.

3. Physical limitations of the magnetic control system for provid-
ing the pointing accuracy desired for the ideally constructed
satellite are determined.

4, A qualitative analysis is made of further limitations to the
pointing accuracy caused by deviations from the ideal construc-

tion of the satellite and control system equipaent.

The control system studied can generally be utilized on any spiuning
symmetric satellite. It is specifically applicable to a drag-free satel~
lite housing an unsupported gyroscope experiment (Ref. 26). This satel-
lite has two basic differences from other satellites with respect to
attitude control considerations. First, the drag-free feature implies
that the spinning satellite is translationaliy controlled by means of
gas jets to keep the spinning proof mass (the gyroscope) centered within
its central cavity. The jet forces give rise to the existence of pulsz

torques (which would not normally be present) acting upon the satellite.
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The second unique feature of this drag-free satellite is that it
has two optical instruments which can be used to determine attitude
ervror. A precision stellar monitor is mounted on the end of the satel-
lite so that the monitor's optically sensitive axis is nominally aligned
with the satellite spin axis. An autocollimator is similarly located
on the interior wall of the satellite to monitor the rotor spin axis.
The autocollimator's optically sensitive axis is also nominally aligned
with the satellite spin axis and thus detects the angular position of
an optical flat ground on the rotor's maximum axis. (This requires that
the rotor spin axis be nearly aligned with the satellite spia axis.)
Both the stellar monitor and autocollimator have four-quadrant sensitive
optical heads so that cartesian measurements of the angular positions
of the star image and rotor spin axis can be made.

The reference star is nominally in the plane of the polar orbit so

the nominal position of the spacecraft spin axis lies in the orbit plane.

It is initially assumed that perfect measurement of the position of a

reference point on the celestial sphere (either from the stellar monitor
or autocollimator) is constantly available for providing pointing error
measurements to the satellite. The attitude error measurement device
will be known as the "star tracker."

As in Chapter III, it is desired that the satellite's spin speed remain
nearly coanstant. Spin speed can be monitored from the oscillating read-
ings of a magnetometer measuring the lateral component of the magnetic

field.

THE OBSERVABILITY OF DISTURBANCE TORQUES

With the assumption that the spacecraft has a constant spian speed
&, the rotational equations of motion are described as in Egqs. (2.27),

repeated here:

— - - _ —
w 0 - w 1 0

X a'Sw’ 0 0 X

. ; T

W a Vy 0 0 0 W 0 1 X

y s y I

= + bt
0 0 0 O '

Tx 1 v ’x Ixx Tj

y 0 1 =y oy o O
A LY - (4.1)
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where again

wx,wy = lateral axes X and y components of the angular
velocity of the spacecraft about its center of mass,
7x'7y = body-fixed orthogonal components of the star image's

(or gyro optical axis) misalignment error,
= moment of inertia ratin (I -1 )/1 ,
ZZ XX XX
T ,T = torque acting upon the spacecraft about its §B
and ¥ axes.
yB e

In this ideal situation, if the applied torque (Tx§ + Ty9B) is strictly

a control torque which is a function of the states, fhen the pointing
error can be made arbitrarily small. However, it is known that the space-
craft will be exposed to disturbance torques which are dependent upon the
envirénment. These disturbances will cause deviation from the nominal
attitude if they are not taken into account.

The disturbance torques which are of immediate concern include those
classified as inertially-fixed, body-fixed, and spin torque, and those
due to misaligned thrusters used for translational control purposes.

The development of models for the first three torques was the subject of
the final section of Chapter 2. The latter torque can be thought of as
an inertially-fixed and spin torque in the average sense, as explained

in Chapter 2. However, thruster torques can more correctly be classified
as short-period, body-fixed, and spin disturbances. Exactly how these
pulse torques can be treated will be investigated in this section,

The inertially-fixed and body-fixed torques acting on the space-
craft do not have constant magnitude as is evident from Figures 2.11 -
2.12. Rather, they can be characterized by their derivatives being
random forcing functions which tend to change the magnitudes. In the

body-fixed frame the derivatives of the body fixed torques are

TBX = vy (4.2a)
TBy =v, . (4.2b)
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Here, V and v represent random changes. For the inertially-fixed

1 2
torque having components T*x and T*y, the transformation to the body
frame produces components
TIX = T*X cos ¥ + T*y sin V¥ , (4.3a)
TIy :-T*X cos ¥ + T*y cos V¥ . (4.3b)

Taking the derivative of Equations (4.3) produces

= T + Vv 4.4
Ix v Iy 3’ ( 2)
TIy = =V TIX + v4 s (4.4b)
where Va and vy represent further random change.
It is desirable to be able to measure the disturbances TBx’ TBy’

Ix
can be applied to cancel them. Incorporating Eqgs. (4.2) and (4.4) into

T , and TIy' If their magnitude is known, corrective control torque

(4.1) produces the state equations
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Here, TCx and Tcy represent the applied control torque components
which are functions of the states. In compact notation, Eq. (4.5) can
be expressed as

X =FX + Gu + DV, (4.6)

where Gé is the applied control torque and 39 the random change to
the disturbance torque magnitude.

The distribution matrix G has the form

0>
l o O O B O o © O|
I o o = O © © O OI

The quantities measured by the star tracker and available to base

the control law upon are 7X and 7y' The observation equation is

- =
y = HX + w
i - . ->T
where w represents measurement noise, y = [7X,7y and

It can be shown-that (H,F) form an observable set. Thus, a
Wiener filter or an observer with arbitrary dynamics can be built which
will give estimates of the eight state components. The pair (F,G)
does not form a controllable set, however. This is obvious because

there is no physical way of removing disturbance torques.
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Although disturbance torques cannot be removed (at least not com-
pletely), their effect can be cancelled by the proper application of
control torque. Thus, it is desirable to form estimates of the distur-
bance torque magnitudes. This torque estimation is a logical extension
of an observer which is required for measuring rates wx and wy needed

in the control law.

The Gopinath Reduced-Order Observer for NoncyClic Systems

As mentioned above, estimates of the unknown elements of the state
vector can be produced by either a Wiener filter or an observer. The
Wiener filter is identically the steady-state solution to the Kalman
filter described in Chapter 3, and is useful in the presence of Gaussian
driving and measurement noise. It is initially assumed here that the
noise vectors v and W are negligible, so that this filter mechaniza-
tion represents undue complication. The effect of this assumption will
be considered later in the error—analysis section.

With the star-tracker variables representing very clean measurements
of the attitude error, it becomes feasible to employ a reduced-~order ob-
server to estimate the rates wX and wy andvthe disturbance torque
magnitudes. A recently developed mechanization of such an observer was
formulated by Gopinath and is outlined in Appendix D. Gopinath's for-
mulation requires that the system's equations be cyclic (or controllable
so that they can be made cyclic). Equations (4.5) are neither controllable
nor cyclic so an extension of Gopinath's method is required to handle
this case.

The general state equations

My

FX + Gu ,
¥ = HE , (4.7)
are considered. Here, the dimensions of x, u, y, F, G, and H are
nX1l, r X1, m X1, n Xn, n Xr and m X n respectively. As is seen

in Appendix D, Gopinath's method for producing an observer with arbitrary

dynamics for Eqs. (4.6) is a specialization of the general method using

136



canonical forms. Thus, for F noncyclic and the pair (F,G) not con-
trollable, it is necessary to follow a procedure similar to the one
required to produce the canonical-form observer. This procedure is
dependent upon the following corollary which is derived from the theo-

rems presernted in Appendix D.

Corollary 4.1, Let F be similar to an n X n Jordan matrix J and

let p Dbe the maximum number of Jordon chains in which each one
of the individual eigenvalues of F appears. Then if (F,H) 1is
observable, the pair (F,CH) 1is almost surely observable where C

is a p Xm matrix (p < m) made up of arbitrary elements.

Proof.
The Jordan matrix J can be rearranged by a simple transformation
into p diagonal subblocks so that the Jordan chains making up each
subblock have no individual eigenvalue appearing in more than one chain.
By the definition of cyclicity, each of these subblocks defines a cyclic
subspace. At least one scalar output must emanate from each of the sub-
blocks because the overali system (F,H) 1is observable. Multiple out-
puts come from some of the subblocks when m > p. These multiple out-
puts can be combined into a single output which renders the associated
subblock observable by Theorem D.1. Thus, the original m X 1 system
output vector can be transformed into a p X 1 output vector which also
produces observability. The p individual components of the output vec-
tor -can be transformed into p. independent combinations which again
yields an observable system. Thus, any p X m matrix C which com-
bines with H to produce a p X 1 output vector whose elements are
independent combinations of the outputs from the p cyclic subblocks
renders (F,CH) observable. The basic requirement is that C have
rank p. This will almost surely occur if the elements of C are ar-

bitrarily chosen.§
This corollary suggests a systematic way for creating a state esti-
mator with arbitrary dynamics for an observable, noncyclic, noncontrol-

lable system. The method consists of following the general procedure
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outlined in Appendix D which utilizes canonical forms except when forming
the M1 matrix. Instead of using individual rows of H successively
with F +to create Ml’ one can generate p arbitrary m X 1 matrices
Ci' Then, each of the p row vectors czH (which make up CH) is
sequentially used to generate the n independent rows of Ml'

Because the index p 1is usually unknown without transforming to
Jordan form (which is to be avoided), the process actually consists of
generating random vectors ey apd using them until a satisfactory matrix
M1 is formed. This procedure can be repeated twice with different sets
of ci's to insure that the minimum index p has been found.

This procedure can be utilized for constructing the Gopinath reduced-
order observer to insure that the minimum number of output combinations
are used to generate estimates of the unknown elements of the state vec-

tor. The modified Gopinath reduced-order observer is now demonstrated.

Application to the Star Tracker Satellite

In this subsection, the Gopinath procedure is applied in two ways
to generate a state observer with arbitrary dynamics. The first appli-
cation employs the modification suggested previously for handling the
noncyclicity of the F matrix. The second approach utilizes the fact
that the system equations possess complex symmetry. The rgsulting
complex’system is cyclic so that the process of generating the reduced-
order observéf can be applied directly in its original form. The modi-~-
fied observer is now discussed. )

Following the procedure outlined in Appendix D, the state vector

__)
X 1is partitioned as

where x1 represents the directly observable p elements of x. Then

F and G are partitioned as
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- 1
F11 ! F12 P

F = ]

== - - = = ’
l —

F21 | F22 n-p
—
G1 p

G= |--— .
G, n-p
Lz

Rearranging and partitioning Eqs. (4.4) in this way and exclusing the

noise, yields

5 o -¥' 1 o o o o o] [ [0 0]
y ] y
I
i 1 0 0
7, b o, 0 0 0 o 8 o (3
- - - |- - -. - - = -
oy 0 0, 0 al 1 0 1 0 W o 1|
] Cy
I = 0 O -a \!f 0 0 1 (8] 1 48} + 1 0 ]
X s X T
. L] . ' CcX
0 0 0 0o - 0o o0 T 0 o
Iy 0. v Iy
]
1 I 0 0
Ty 0 o ! 0 0 ¥ o o o T
| o o' o 0 0 0 0 O T 0O o
"By . By
T ¥ , 0 0 0
B 0 o ! 0 0 0o 0 0 T
(4.8)
7 1 0 0.0 O O O o0

xx 0 1 0 0 0 0
observed

Because (F,H) 1is observable, (F ) 1is observable by Theo-

22’F12
rem D.5. The submatrix F22 is not cyclic, however, because of the
last two rows of zeroes. Thus, two independent output combinations of

yx, 7y are necessary to form an observable set.
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The simplest matrix C that can be used to form the reduced~order
observer in this case is the 2 X 2 identity matrix. Thus, the M1 matrix
(of Appendix D) is formulated by using both rows of the H matrix.*

As an example, use ﬁ =1 and as = 0.5 in Eqs. (4.8). This produces

1. 4] 0 0 0 4]
\
1st row of H
0 .5 1. 0 1. 0
-.25 0 0 ~-,5 0 .5
M1 =
0 -,125 -.75 0 -,25 0
. 0625 0 0 .625 0 -,125
t; 0 1. 0o . 0 0 0 - 2nd row of H.
R

The characteristic equation of Fzz

the matrix to canonical form as is indicated in Appendix D. This is

can be found by transforming

rB 1. 0 0 0 d_
o 4] 1. 0 0 : 0
-1 o 0 0 1. 0 : 0 .
S o 0 o © 1.: 0
0 -.25 0 -1.25 o'o
l_(_) 0 3. 0 4.: 0
Thus, F has the chéracteristic equation

22
5 3
(s +1.25 s + 0.25 8)(s) =0

If the gain matrix K of Appendix D is of the form

*The satellite example used here does not illustrate the full poten-
fial available from the extension of the Gopinath observer stated
in Corollary 4.1. No more illustrativVe example was contrived, how-
ever, for the sake of maintaining subject unity.
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_kl d—
k2 0
k3 0

K = k4 o |’
k5 0
0 k6

the observer will have the characteristic equation

4 3 2
Es + ks + (k2 + 1.25)s + k. s + (k4 + 0.25)s + k5](s + k6) =0 .

1 3

For a desired characteristic equation (s + 1)6 = 0, K becomes

5. 0o ]
8.75 0
10. 0
K=lars o ’
1.0 0
0 1.0
L. o
and the matrix L of (F-ILH) is equal to
5., 0o ]
0 1.
L =M ATk = > °
M = |-s. 0 :
0.75 -0.5
| 2. 0 _J

Here, A is formed by inspection from F1 and is
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1. 0 0 0 o0
0 1 0 0 o
1.25 0 1. )
A=1o 1.25 0 1. ©
0.25 0 1.25 0 1
LB"-?)“"“O“_EOQT)

-1
The matrix A

Hjo0 ©O ©o ©o ©

can be formed by inspection from the

A matrix.

The second method of forming the reduced-order observer is now dis-

cussed. The problem that F

22

nizing that the system equations have complex symmetry.

is noncyclic can be circumvented by recog-

can be reformulated in complex form as
- - — — — -
4 -j¥ 1. 0 0 ¥
- - T I e -
W 0 ! jav 1. 1 0
= ] s
. e 0
TI 01 0 Jv TI
1
I 0 O T
TB 0, 0 B
I . 4 L
[7observed] = [1' 0 0 O] [x] :
Here, the matrix M1 becomes
rﬂ 1. 0
_ Jja ﬁ 1.
M o= s
~(a.? i@ -1
. s . s

The characteristic equation of

SS + j&(l—

F22 is

a )s2 + a &25 0
s s
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Thus, Egs. (4.5)
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The A matrix is therefore

1 0 0
A=|5¥a-a) 1. o].
a_i Va-a) 1
S Jhd-ag :
If the desired characteristic equation of Foo ~ LF12 is

2
53 + b, + b,s +b, =0,

1 2 3
L, is found by
L = M;1A—1K ,
1. 0 0 1. 0 0 b, =3V (L.-a_)
=to a i /U —'&(1 -a ) 1 b _-a &2
s J J " s ' 0 2 s
R il _e20q 2 2 a1
1]aSW 1.—aS -j/Vv e (1. as+as) jr@. as) 1. b3

With LT = [zl, £2, Bs] , the complex reduced-~order observer for the
star-tracking spacecraft studied here is depicted in Figure 4.1. Either
this complex reduced-order observer or the modified observer discussed
previously wili produce estimates of the vehicle rates and disturbance
torques with arbitrary dynamics.

The reduced-order observer generally yields a system which is sim-
pler to mechanize than one of full order. The modified Gopinath observer
developed above reduces the total number of outputs utilized from a multi-
dimensional output system to that minimum number which still produces an

observer for obtaining the unmeasurable states.

143



128 A ivdo Ao | |ivdy 23
Ay (2 f z z
s ‘i&
— b 13
@ %, %

FIG. 4.1. COMPLEX REDUCED-ORDER OBSERVER FOR A SATELLITE
EMPLOYING A STAR TRACKER FOR ATTITUDE ERROR
MEASUREMENT .

The Observation of Misaligned Thruster Torques

The previous subsection demonstrated two ways in which a reduced
order observer could be used to generate estimates of the unknown body-
fixed and inertially~fixed disturbance torques acting upon the satellite.
Inherent in the observer construction was the fact that the magnitudes
of these torques were slowly changing with respect to time. For the
case of the drag free satellite with gas jet translational control, the
existence of pulse torques associated with each jet firing must be taken
into account.

Assume that the spinning satellite is cylindrical in shape and has
six jets to control its translational motion. Assume that four of these
jets are on the perimeter of the cylindrical surface, 90° apart, and in
the plane containing the nominal center of mass. The other two jets are
on zach end. These jets are considered to be mounted on the body axes

s

g ?B, and EB defined before.

Misalignment of the four jets on the cylinders produces pulse tor-

B,

ques that have both a body-fixed portion and spin portion. The jet on
the end of the §B axis produces a torque about the §B axis. The two
jets mounted on the satellite ends can produce torque components about

both the §B and §B axes. The magnitude of these jet-produced torques
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will vary slowly with time if the center of mass of the satellite shifts
due to gas usage.

The pulse torques cannot be followed by the observer as developed
to this point because of the short length of time (less than 0.1 second)
a typical jet firing lasts. What actually occurs is that the average
torque produced by these jets tends to be in a constant orientation with
respect to the translational motion of the satellite in its orbit. Thus,
as discussed in Chapter 1I, these pulse torques are observed in the aver-
age sense as an inertially-fixed torque.

A natural question at this time is whether the observer utilized
can be modified to produce a more precise estimate of the pulse torques
when they occur. An electric signal is available when each gas jet is
fired and can be utilized by the observer as additional information.

To answer the question, consider an analogous system consisting of
a double integrator plant driven by an input with two levels of magnitude.
If one observes the output and knows at what times the magnhitude-changes
to the input occur, it is certainly possible to determine these magnitudes
precisely. It therefore seems reasonable that one could predict the in-
dividual pulse magnitudes--i.e., the total inpulse~-caused by each of the
six gas jets.

Consider now the short term response of the satellites acted upon
only by an occasional pulse torque. From Eqs. (4.1) the response of the

variable 7x to a body-fixed torque Txo is

(wXo + TXO/Ix )

7X(t) = V4o O ¥t + 7yo sin ¥t + (sin a_ Yt + sin Yt)

W(as+1)
w L3 i 3
yo
4 —~——— (cos a ¥t - cos Vt) , (4.9)
ﬁ(a + 1) S
s
where w , w_, 7 , and 7 are initial conditions. Thus for the
X0 yO X0 yo

jet responsible for TXo on for Atl seconds, the new value of 7x

from (4.9) at the end of the pulse is approximately
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741 = %o T 7yo{lfAt1 + QT /T ) Aty (4.10a)

Similarly,
Wy o - (asﬁmyo - T /1) At (4.10b)
‘7y1 = Y90 7xoxifAt1 + wyo Atl . (4.10c¢)

The value of Vs at a time Atz seconds later (where Atz is again
small) with no torque TXo is
= w
7x2 Tx1 * 7ylw A‘1:2 * Y% A¢2 i

or from Eqs. (4.10)

T
~ v Xo
Yeo = Zxo + 7yow(A¢1 + Atz) + wXO(A¢1 + Amz) + Ixx Atl
4.11)

Thus, the magnitude of the pulse Txo is approximately

Txo = Ixx[?xz-'xxo - (7yow * wxo)A¢3]/gt1 ) (4.12)
Similarly,

Tyo = ;xx[%yz - 7y0 + (7XO¢ - wyo)Axé]/Aml , (4.13)
where Ats = (Aml + Amz).

Equations (4.12, 4.13) suggest that the observer utilized to esti-
mate the other states may be adapted to estimate pulse torques recursively.
By sampling the values of 7x’ Vy, ax’ and @y at the beginning of a
pulse and at some increment of time At2 after the pulse, pulse torque

estimates can be updated from the equations
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H >
Il

X0 Txo * Kpu[%x " 70 At3(W7yo * wxo)] ’

”~

T T +K - + At @y - B ] ) 4.14
yo yo pu[7y 7yo 3(W7xo yo) ( )

Here, variations in the pulse length Aml are neglected. The gain Kpu
is chosen so that the pulse estimates converge at a convenient rate.
This mechanization requires some circuit logic on the'spacecraft which
should pose no special problem. The validity of using Eqs. (4.14) for

pulse torque estimation is demonstrated in the next section.

THE ATTITUDE AND SPIN SPEED CONTROL OF THE SATELLITE

In Reference 61, a general technique utilizing frequency and complex
symmetry properties is developed and demonstrated for synthesizing the
attitude control law for spinning symmetric vehicles. This technique
enables the designer to give a spinning satellite without disturbance
torques arbitrary dynamic response. When the sensor that detects point-
ing error consists of a star tracker alighed with the spin axis, an ob-
server is used to obtain estimates of the vehicle body rates ax and
ay. Then, the continuous control law applied to the body-fixed axes is

(in complex notation)

~

T, = KW - (K- jo.S(IZZ/IXX)@KV) 7, (4.15)
or in real form
Tex = —Kvax B prx —-O'S(Izz/lxx)iKvyy !
T, = .Kvay - K7+ 0.5(1ZZ/IXX)14}KV7x . (4.16)

The gains KV and Kp are chosen to produce arbitrary response from the
harmonic oscillator equation (which represents the fourth-order plant

uncoupled into two second-order equations),
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. . N 2
Hy + Kby + [Kp + 0.25(IZZ¢/IXX) ] b =0,

They can also be chosen to minimize the control system power as was done

in Chapter III.

The attitude error angle Ii é 7eJWt is driven to zero by applica-

tion of Eqs. (4.16) when no disturbance torques are present. However,
in the presence of inertially-~fixed and body-fixed torques TI and TB’

the steady state value of Ii becomes

TB eJWt TI
l_'l('t) = + ,

- 2 ° 2
[wn + jW(1—0.5Rsﬂ [—mn + jO.5RSWJ

where

2 A o 2
w = R

N Kp + ( SW) /4
K = 2w ’

v n
R =1 /1 .

5 znZ XX

The complex error angle Ii(t) can be made quite small for large Kp
but this is not always practical.

A modification of the control law is to estimate directly by means
of observer mechanization, the disturbance torques. Because the rate
terms wX and wy probably will be estimated anyway (rather than using
some rate detection device like a gyro), the addition of necessary elec-
tronics for disturbance-torque estimation seems to be a reasonable supple-
mentary requirement. Then, the complex control law of Eq. (4.15) is

modified to

c K 0 - - jO.5R ¥ -7 -7 4.17
Tc KV (Kp J RSwKV)y TI TB , (v )

”~N

where TI and %B are the complex estimates of the inertially-fixed
and body-fixed disturbances. In addition, the estimated pulse torque
also can be cancelled by an opposite control-torque pulse at the appro-

priate time. Equation (4.17) constitutes a new control law.
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An alternate modification to the control law which is discussed
in Ref. 61 is to introduce an integral feedback term that would offset

the undesired torques without steady-state error. The integral control

modifies Eq. (4.15) to

K K
T (s) = -K D(s) - (K - jO.5R YK + —& + —LL _ 5(s) (4.18)
c v P s’ v . e
s + Jjvy
in the complex frequency domain. Here, the gains KIB and KII are
chosen to produce the desired error-removal rate. The constant K is

11
complex, so this portion of the controller must be mechanized as two con-

stants. 1In addition, if continuous control torque is not always fully
available (as in the case of magnetic control), a means must be provided
for limiting the integral portion of the controller to prevent amplifier
saturation.

The controller based upon Eq. (4.17) seems to have two advantages

over the integral-type controller. They are:

1. No choice of gains KIB and KII need be made by the designer.
The response for providing the control torque to cancel the
disturbance torques is established with the choice of observer
dynamics. )

2. If full control Tc cannot be provided, this is accounted for
in the observer mechanization. Thus, values of disturbance-

torque estimates are not affected.

The equations of motion for the system under consideration, the
development of a state observer, and the provision of a continuous con-
troller governed by Eq. (4.17) are all based upon the assumption that
the spin speed & is a constant. Both environmental torques and those
due to translation and attitude control of the satellite will cause the
spin speed to deviate from the nominal value $o° If one applies the

control torque

TCZ = —KZ sgn(y - wo) (4.19)
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about the spin axis for ]ﬁ - ¢o| exceeding some deadband value, the
spin speed can be kept within the desired accuracy limits. The limit
is chosen so that the observer and controller mechanizations are not
affected adversely by spin-speed deviation.

As a means of determining the performance capabilities of the reduced-
order observer, the pulse estimator, and the modified control law, a di-
gital simulation was used. This simulation assumed perfect measurements
of the star-tracker variables. It was also assumed at this point that
the magnitude of the spin speed was nominal and the magnitudes of the
disturbance torque components were constant.

A two-dimensional model of the translational controller was used to
create a time history of the pulse torques. In other words, it was
assumed that the satellite was moving in the plane of the ﬁ*, 26 axes
so that only the four jets on the cylinder were firing regulérly.

The equations of motion and translational control synthesis for the
spinning drag-free satellite were derived by Lange (Ref. 26). In the

body-fixed frame, the two dimensional translation equations are

% - VPx - 2{y

Dr cos YVt + FCX )

. +2 s .2

y~-Vy+ 2¥x = —Dr sin ¥t + Fcy ,
where Dr is the drag magnitude, ﬁ is the spin rate, ch and Fc
are the control forces, and x and y are body-fixed measurements of
the distance from the satellite reference point to the proof mass (gyro

rotor). The control law used to regulate the satellite's translational

motion to follow the proof mass is

FCX = —Kvl[? - Yy + kzx] ,

- v o+ . 4.20
FCy KV1[§ + X + kzy] ( )
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This stable linear control can be approximated by a pulse-width, pulse-
frequency gas jet control preceded by a deadband. A schematic repre-
sentation of this controller is illustrated in Figure 3.2 and was in-

cluded as part of the simulation.

|/ : ]
/| + stk (s+ak)2
— NOISE
Dx ‘p +
v 3 1 M NI E‘*
z+ s 10 z-& s Ik -% " :]

+ +
Dy ) + ]
NOISE
I / + ‘ - I
71 23 b (seai?

FIG. 4.2. SCHEMATIC OF THE TRANSILATIONAL CONTROL OF A SPINNING
SATELLITE EMPLOYING THE PULSE-WIDTH, PULSE-FREQUENCY
CONTROLLER .

When the positivé X threshold is crossed, the jet at the end of
the positive §B axis of the vehicle fires. Similarly, when the minus
x threshold is crossed, the negative ﬁB axis jet fires. These both
produce pulse torque about the §B axis.

Example results of using this simulation are shown in Figures 4.3
and 4.4. Figure 4.3 illustrates the steady state response of the atti-
tude control system with the reduced-order observer but no pulse esti-

mator. Figure 4.4 has the same pulse torques with the pulse estimator
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in operation. Gains used by the observer gave it the

equation (s + 1)6 = 0. The attitude control law [Eq.

no pulse estimator was

= -0 - - 0.75 -7 -7
Tcx X 7x 7 7y TBX TIX
T =-0 -y +0.75 y -T -7
cy y y ”x By Iy

with ¥ =1 rad/sec and (I__/I_) = 1.5. When using
- 7z TxXX
of Bg. (4.14) were

the gain Kpu and time lag A¢3
Kpu = 300 kg-m ,
At, = 0.2 sec.

The values of the disturbance torques used were

=
Il

-4
5. X 10 N-m ,

Bx
T =3. %10 ¥ N-m
By = ° ’

-5

T =2.2X10° N-m,
*

X

-5

T = ~0.3 X 10 N-m.
xy

The pulse torques were

T = -10"° N-m ,
X+
T =10 " N-m ,
X—
-3
T =1.5X10 ° N-m ,
¥+
-3
Ty— = 0.5 X 10 N-m.
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(4.18)] used with

sec s (4.21)

the pulse estimator,



L

. 4 . . ~

Figure 3 delineates the response of Y 7y’ TBX’ and By the

total body-fixed torques,
T =T + 0 T + 3 T ,
X Bx X+ X+ X-  X-
T =T + O T + O T , (4.22)
y By y+ ¥+ y- y-

also shown. Here & , 3 , 8 , and & are each zero except when

X+ X v+ -

the appropriate jet is firing, at which time they become unity. Note.,
that 7x and 7y vary between +1.0 arc second.

Figure 4.4 indicates that using the pulse estimator enables the
control system to keep Vs and 7y below +£0.01 arc second. In this
figure, the convergence of the estimate of the total body-fixed torques

defined in (4.22) can readily be seen. The control law here is

T =T -5 T -85 T
cxl cxX X+ X+ X  X=

T =T -5 T -® T |, (4.23)
cyl cy y+ y+ y= y-

)

where T and T are defined in (4.21) and f R T , T , and
N cx cy X+ y+ X~

T _ are estimates of the pulse torques. The actual applied control

torque must also be modified to include estimates of torques caused by

the jets on the satellite ends.

MAGNETIC IMPLEMENTATION OF THE CONTROL LAW

Equations (4.12) and (4.23) combine to form the continuous pointing
control law with pulse discontinuitiés for the spinning satellite. Equa-
tion (4.19) represents the ideal spin control. In this section, the
mechanization equations are developed which allow actuation of the de-

sired control magnetically.
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Pointing Control

As stated in Chapter 111, the torque due to generating a magnetic

moment m in the magnetic field B is

%
T=mXB . (4.24)
— e A PN
If T is the desired pointing control torque TD = TDXXB + TDyyB’ then

(4.24) results in

TDX = my BZ ~ mZ By s
T =m B ~m B
Dy Z X X z

If for power efficiency reasons, the magnetic moment m is generated
- —>
so that g is perpendicularvto B (or ﬁ? s« B = 0), the three com-

ponents of ﬁf) must be

2 2 2
m, = (TDyBx - TDxBy)/(Bx + By + Bz) ,
mx = (szx - Dy)/Bz !
= B . .
my (mz v + TDX)/BZ (4.25)

These are identically Eqgs. (3.44) of Chapter III. As in Chapter III, these
equations can be simplified at the cost of mechanization power by setting

m = 0, resulting in
m_ = —TDy/BZ ,

m =T_ /B . (4.286)
y Dx' z

Mechanization of either Egs. (4.25§ or (4.26) will result in the
desired pointing control torque. The only time when they can't be

utilized is when the component of the magnetic field along the spin axis
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Bz becomes very small. As can be visualized for a satellite in a cir-
cular polar orbit passing through a magnetic dipole field, Bz crosses
through zero four times during an orbital period. Thus, at each of these
points during the orbit, perfect pointing control by magnetic means is
not possible. However, partial control is available when BZ is very
small by making use of only the component mz. This is done by using
the first of Eqs. (4.25). Therefore, for pointing control of the spinning
satellite studied in this chapter, the control mechanization is broken
into two phases. During the precision control phase (when B is not
near zero), Eqs. (4.25) or (4.25) are used. During Mode 2, oﬁly m_
from Eqs. (4.25) is utilized.
Implementation of this controller requires that three orthogonal
coils be present on the spacecraft. Also, a three-axis magnetometer
must be mounted so that all components of the magnetic field E’ can be
measured. If Eqs. (4.25) are used during the precision-control phase,
the magnetic field must be sampled at points of time with the coils turned
off to prevent interference to the magnetometers. From these held samples,
the continuous values of the components of §> can be computed.
Utilization of Eqs. (4.26) during the precision phase eliminates the
need for sampling of Ei During this phase, only Bz (which is perpen-
dicular to m and my) needs to be measured. From this considsration
and the simplicity of Egs. (4.26), they seem to be more logical choice
than Eqs. (4.25). The cutoff point (value of BZ) which should be used
to switch from one phase logic to the other is arbitrary. Use of three
components of ﬁa as in (4.25) will be known as the three~coil controller.

The employment of (4.26) will be referred to as the two-coil controller.

Spin Control

It is impossible to actuate spin control simultaneously with precision
pointing control due to the arbitrary direction of B. However, during

Mode 2 control, spin correction can be implemented by generating

=
]

Ksz sgn (¥ - Wo) ’
m_ = -KB_sen - 1110) ) (4.27)
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where Wo is the nominal spin speed. These create a component of if
perpendicular to the lateral component of Ei The resulting spin con-
trol torque is analogous to the principle of the induction motor. Appli-
cation of the spin control Eqs. (4.27) results in a disturbance to the
spin axis direction due to the presence of BZ- But, BZ monotonically
changes during this phase and crosses the zero point. Therefore, the
effect of the pointing disturbance due to spin control after the zero
point should essentially cancel the effect of the disturbance before

crossover.

IDEAL PERFORMANCE OF THE MAGNETIC CONTROL SYSTEM

Based on the fact that precise pointing control of the spacecraft's
spin axis cannot be maintained at four distinct instances during the or-
bital period, the following questions arise concerning the available

magnetic precision control.

1. What percentage of the time during the orbit is precision
magnetic control available?

2. How large a deviation does the spin axis of the spacecraft
travel from the nominal position during periods of only partial
pointing control?

3. What deviations of the spin speed take place on the spacecraft?

In answering these questions, it still is assumed that an ideal system
exists; that is, the star tracker variables are precisely measured, the
model of the vehicle used by the observer is correct, and the magnetometer
readings and control torques are exact. Performance of the non-ideal sys-
tem is investigated in the next section.

To answer the above questions, a highly accurate digital simulation
of the rotational motion of the satellite in its orbital environment was
made. The disturbance torque program developed in Chapter II was used as
a driver for the satellite so that performance in the presence of real-
istic environmental conditions could be more correctly ascertained. The
magnetic field model used was the ninth order spherical harmonic expan-

sion model described in Appendix A. The satellite and environment
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characteristic parameters of the torque generating portion of the pro-
gram were the same as those which generated Figures 2.11 - 2.12.

The pointing control and observer gains employed were the same as
those used to demonstrate the pulse estimator operation in a previous
section. The value of spin control gain KZ used was 1.875 X 105 Amp-
m4/Wb. The crossover values of BZ were chosen to be the points where
Bz = 0.1]51. The amountf of time spent during a typical orbit in the
precision pointing phase, the spin control phase (Mode 2), and the re-
covery of precision control following a spin-control period are tabulated

in Table 4.1.

Table 4.1. PRECISION CONTROL TIMES FOR FOUR PORTIONS OF A TYPICAL
POLAR ORBIT

Recovery Time
Portion of Precision Pointing Spin Control Following
Orbit Time (sec) Time (sec) Spin Control
(sec)
1 1165. 123. 18.
2 1575. 72. 22.
3 1025. 117. 10.
4 1665. 98. 56.

Recovery time is the time required by the control system to drive both
7x and yy below 0.02‘arc seconds following a spin-control period.
From these results it can be seen that more than.90 percent of the orbit
period is spent in precision péinting control. Several runs were made
with this simulation using both the two-coil and three-coil pointing
control laws. |

The maximum observed deviation of the spin axis from the reference
during a spin control phase of a typical orbit was 4.12 arc seconds.
Maximum deviation of the spin speed was 0.0024 rad/sec under worst case
spin torques. This number was obtained with a deadband on the spin
speed, set at 0.001 rad/sec. The maximum value of the magnetic moment
of each coil was usually fixed at 20 Amp—mz.

If the value of the maximum magnetic moment which can be generated

in each coil is too small, the control system is not capable of obtaining
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the precision periods indicated above. Figure 4.5 indicates the response
of the star tracker variable /- during a recovery phase under three
sets of torque and control conditions. The body-fixed torques were

TBx = 1.25 X 10_3 N-m and2 TBy = 6.25 X 10"4 N-m. With the magnetic
moments limited to 20 Amp-m , pointing accuracy was limited to 0.5 arc

second using control-mechanization Eqs. (4.26) following the spin control

mode.

response with body-fixed distur-
bance torques.

—.— response with no body-fixed dis-
turbance torques.

..... response where magnetic moments
in coils are limited to 20 Amp-m

7N
- \

7, {arc sec)
o

/8 N H 16 0
TIME (sec)
Bl |
-2
- LAST PART OF
SPIN CONTROL MODE - POINTING CONTROL MODE

FIG. 4.5. RESPONSE OF STAR TRACKER VARIABLE vy VS TIME FOR DIFFERENT
X
CONTROL SITUATIONS NEAR THE END OF A SPIN CONTROL PHASE.

SYSTEM ERROR ANALYSIS

In this section, a'qualitative analysis is made to determine what
‘effect the inaccuracies in building and modeling the spinning satellite
have upon the attitude control system's performance. Specific error

sources studied include:

1. The incorrect applied control torque due to misaligned magnetic
coils or misaligned magnetic moments caused by the nonunifor-
mity of the coil core,

2., Magnetometer and magnetic measurement processing errors,
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3. Nonsymmetry of the spacecraft and the incorrect modeling of
the spacecraft parameters in the observer, and

4., Noisy star tracker measurements.

Analytical expressions for the resulting disturbances will be derived
and indications of how the resulting attitude errors can be reduced will
be indicated where appropriate.

Error sources which are not investigated include those which are
specifically a function of the manner in which the state observer is
physically constructed. These include errors such as digital roundoff
or biased integrators, gain deviations, and noise sources internal to

the observer.

Misaligned Magnetic Coils

In constructing the satellite, the wire coils used to generate the
magnetic moment will be mounted with some degree of misalignment with
respect to the desired control axes. Also, the magnetic moment created
by these coils may be deflected because of the nonuniformity of the
satellite material in the core. Figure 4.6 illustrates the general
misalignment of three orthogonal coils nominally aligned with the vehicle
axes X

§B’ and Z Because the satellite is symmetric, the projec-

B’ B’
tion of the Y coil's axis upon the lateral plane is arbitrarily defined

the §_ axis.
as e yB

The actual maghetic moments created by the three coils are

m = m' cos cos + m' sin

X P Ey & z cy ’
m = m' cos sin + m'. cos - m' cos sin

y X gy gz y e Z Cy Cx ’
m = -m' sin + m' sin + m' cos

P x gy y My b Cy CX ’
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FIG. 4.6. GEOMETRY OF MAGNETIC COIL MISALIGNMENT.

where mé, m' and m' are the actual magnetic moments of each coil.

For small angles this is approximately

-m ] 1 0 €| m'
X y X
m = 1 - tr. 4.28
y EZ Qx my ( )
" 1 1
[y % ]|

For simplicity, it is assumed now that only the X coil is misaligned, or

N, = gx = Cy = 0. Then, for the three~coil control [Eqs. (4.25)], the
applied torque components are

T =mB -mB ,
X y z zZy

T +m'(¢EB + £B) ,
cx X yy Z Z
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=T -m' EB . 4.29)

cy X 7y x
Also,
1 — | —
m = (mZBX T, )/B_
2 2
& - B) B )
= —Tp——T_ - —3‘——2—5’-——‘?—- . (4.30)
B“B y BB
Z z

In the steady state operation, the states 7x' 7y' wx and wy are
driven to zero and the applied control just cancels the disturbance

torques, or

T = ~(T + T cos ¥ + T

cx Bx Ix sin 1),

Iy

= - - si
T (T TIx nvy+ T

cy By cos V) , (4.31)

1y

where V¥ = V¥(t - to). Because the initial time to is arbitrary, one

can define an arbitrary X direction such that

= O
BX BXo cos V¥ ,
By = -on sin V¥ ,
B =k B , (4.32)
z ¢ xo

where on and kc are assumed constant for a slowly changing magnetic
field. It is also assumed that T , T , T and T are slowly
BX B *X *y
changing so that they can be treated as constants.
Equations (4.29) - (4.32) can be combined to yield the actuai ap-

plied torques
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- y . 1
T =T - —+k)T sin ¥y - =~ T cos
X cx (1+k2)k 2 4 B 4 B
¢’ e
2
K sy ) .
+ 5 TIy sin 2V + g cos 2y ~ 7 TBy sin 3y + 7 TBx cos 3V
gz 1 2 2 . 2
- -=T -k T + (l+k )T sin V¥ -k T cos V¥
2 2 By c Bx c Ix c 1y
(1+kc)
+ l T sin 2V + 1 T os 2V
2 "Bx 2 “By °°° ’
£ k2
: y c 1 . <1 2)
T =T + e e T + =T sin ¥V -~ + k T cos V¥
2
y cy (1+k)k c 1y 4 "Bx 4 c By
c’c
(1+ki) ki 1 1
[ i - — — 3 — 3
+ 5 TIX sin 2V > TIy cos 2V + y TBX sin 3V + 7 TBy cos 3¢

For the two-coil control, the X-coil magnetic moment is
m' =-T /B , (4.34)
X cy =z

so that the applied torque. components become

gy TIy TIx TIy
TX=TCX—-k—— T+TBXSIn\II+—§-Sln21II——2——cos2\U

(¢

+ gz [fo - TIx sin V¥ + TIy cos W] s

EX TIy ATIX TIZ
Ty = Tcy - kc 5 + TBy cos ¥ - —— sin 2y + 5 cos 2V | .

(4.35)
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Thus, the error torque includes terms similar to body-fixed and iner-
tially-fixed components which will be detected by the observer and auto-
matically cancelled. Other torque terms include those which rotate in
inertial space at one and two times the negative spin rate. Other terms
act as sinusoidal inputs to one or both axes. It can be seen that these
error torque magnitudes will be largest when Bz’ and consequently the
constant kc, are smallest. Similar disturbance torque expressions can
be found for misaligned Y and Z coils.

In general, the effect of these sinusoidal disturbance inputs can,
of course, be reduced by lowering the values of the inertially-fixed
and body-fixed torques through better design, by keeping the misalign-
ments small, and by reducing the amplitude of the frequency response of
the control system to sinusoidal inputs. The latter correction can be
made by adjusting the characteristic equation of the state observer and
by changing the gains in the control law.

Figure 4.7 shows the amplitude of the frequency response of the
star tracker variables 7x and 7y to a sinusoidal disturbance torque

Ty = 10 sin wt N-m.

In Case 1, the observer has the characteristic equation (s + 0.5)6 =0

-2
and the control law [Eq. (4.16)] has the gains Kp = 1. sec and

-1 N
KV = 1. sec *. 1In Case 2, the control gains have been increased to
-2 -1
Kp = 10. sec and KV =4, sec . 1In Case 3, the characteristic equa-

tion of the observer has been changed to (s + 1.0)6 = 0., It is apparent
that increased control gains and faster observer response both tend to
minimize the effectsbof sinusoidal disturbances.

Figure 4.8 shows the same responses when the sinusoidal disturbance
is applied about the X axis. Here, the control system is the same as

B
that of Case 2 in Figure 4.7.

Magnetometer Errors

The error in the signal to the controller from the magnetometer can

be caused by several factors. Imperfections in magnetometer outputs can
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AMPLITUDE {microrad)

FREQUENCY, w (sec™)

Observer Position Speed
Case Characteristic Gain K Gain Ky
Equation (sec"'zg (sec™1)
6
1 (s + 0.5) =0 1.0 1.0
2 (s + 0.5% =0 10.0 4.0
3 (s +1.00% =0 10.0 4.0

FIG. 4.7. TFREQUENCY RESPONSE OF STAR TRACKER -5
VARIABLES FOR DISTURBANCE INPUT T, = 10
sin wt N-m, AS FROM A MISALIGNED X TORQUING
COIL.
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AMPLITUDE (microrad)

L] b vl L1 U
0.1 1.0 10.0
FREQUENCY (sec™!)

FIG. 4.8. TFREQUENCY RESPONSE OF STAR TRACKER VARIABLES FOR
DISTURBANCE INPUT Ty = 10"5 sin wt N-m AS FROM
A MISALIGNED Y TORQUING COIL. The characteristic
equation of the reduced-order observer is
(s + 0.5)6 = 0 and the control law gains are
Kp = 10 sec”? and K, = 4 sec™l,

result from misalignment of the sensitive axes, bias, scalefactor errors,
output nonlinearities, and random fluctuations of the field not detected
by sampling. Additional error is caused by a time lag in the division
process to obtain 1/B2 and 1/BZ. Figure 4.9 indicates the general

misalignment angles. The following terms are defined as error coeffi-

cients:
b - bias terms of each magnetometer,
X,¥,2
k - scale factor errors of each,
fx,y,2
k - quadratic nonlinearities of each,
nx,y,z
NX V.2 - fluctuations in the magnetic field components.
? ?
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FIG. 4.9. GEOMETRY OF A MISALIGNED MAGNETOMETER.

From Figure 4.9 and these definitions, the measured signal from the X

magnetometer would be

2
B'=[1+k ][B +eB—eB]+k [B +eB—€B]
X fx X Zy Y % nxl x z y Yy Z
+ b + N
X X
~ 2
B +k_B +€eB -~ B +k B +b +N_ . (4.36a)
X fx'x zZy y 2z nx x X X

Similarly, for the Y and Z signals,

R

2
B’ B +k_ B - uB +uB +k B +b +N_ . (4.36b)
y y z X X zZ ny y y y :

fy vy

2
B'®B +k_ B +VvB -~ vB +k B +b +N . (4.36¢)
Zz Z fz = y X Xy nz z Z -4
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From Egs. (4.36), one can compute the resulting error in the applied
magnetic moments and the resulting error torque.

In general, the maghetometer is a fairly accurate instrument. Ref-
erences 55 and 56 report magnetometers with capabilities of measuring
field components with a range of greater than 100 times the minimum
value. Measurable frequency range is from O to 100 Hertz. Accuracies
of measurement are on the order of 0.1 to 1 percent of the full scale
readings. These devices are adjustable up to £ 50000 gamma which is
well above orbital requirements.

The magnetic field during the main phase of a magnetic storm tends
to be noisy with excursions having amplitudes of several hundred gamma
(Ref. 57). The fluctuations occur slowly enough that they pose no prob-
lem to their measurement. A description of other smaller fluctuations
is presented in Appendix A.

For the two-coil controller, the resulting applied magnetic moments

due to the slightly incorrect Bé are

Tc Tcy B By bz-i-NZ
~ X
1=____X=__.__ - -y = —r -
My B' B 1= ke, y B T V%% B KBy B ’
z z z Z z
Tcx Tcx Bx By bz * Nz
T~ G i, R TR .. —4 -k B - —m—Z,
my B' Bz fz Yy B + vx B nz z B
z Z z z
(4.37)

Similar but more complicated expressions result for the three-coil con-
troller. The effect of the scale factor, nonlinear, and bias terms are

taken out by the observation of body-fixed and inertialiy—fixed torques
for a slowly changing field. The noise terms pose no problem if sampling
is done often enough or measurements are taken continuously. The mis-
alignment terms due to (vx,vy), produce sinusoidal inputs into the X
and Y channels as in the case of the misaligned coils. Again, the fre-
quency-response analysis can be applied, and the plots of Figs. 4.7 and

4.8, for example, are pertinent.
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Nonsymmetry of the Spacecraft

Here, the facts that the spacecraft is not perfectly symmetric
about the spin axis, that the moment of inertia ratios are not perfectly
known, and that the spin speed is not always nominal are considered.
From Eqs. (2.6) ~ (2.8) of Chapter II, the equations of motion of w

and W are
y

& = — [T + (I -1 JYww -1 wz]
I X vy zZ

X %x y z VZ Z
I 2
+——3‘L[T + (I -1 Juw I w]
I ZZ X X z XZ Z
XX yy
I
+ —__§%~— [Tz + (Ixx -1 )wxw + zw -1 zw )wz] ’
%X zZ yy y yz x Xz y
(4.38a)
Ix 2
dy: E———%——- P% (@ - I ww — I sz]
xx yy Yy y y
+ 1 [f + (I - I Jww + 1 wz]
I Z2Z X X z XZ Z
yy
I
+—-—-ZL-[1'+(1 - I dww + (I -1 )].
Z XX Z X y oz
yy zz
(4.38b)

If one defines

I =1 + 98I,
XX X0 p:4

I =1 + 81,
yy X0 y

I =1 + 08I ,
zz zZo z
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w='+6w
z Ilro z '

and assumes that w , w , I , I , and I are small quantities,
X y Xy yz Xz
then Eqs. (4.38) can be written as

O T-afw +—— (adl +0I -BI)w -adwuw
X s oy Ixo s X y Z oy s zy

TX I 7 .2 IX I
=2 - L2 I o+ —2L 1 -1 ) w
I I y ZZ xx"'o x
XX XX XX yy XX yy
Xy Xz :2 Ixz Tz
I Vo YT o1 (4.39a)
XX ' yy XX ZzZ
w =aV¥vw + N (-a B3I _ + 08I =~ 28I )V w + a dw W
y s 0 X I sy Z .20 X% s Z X
X0
T I ‘9 I I .9 Ix Tx
LY, X2 2 %y yz 2+ Xy X
I I o I I o I I
yy yy XX yy XX yy
Xy Vyy } Izz I z Tz
1 y
w —_— 4,39
+ T T Wo v + T T (4.39b)
XX yy yy zz

The terms in Egs. (4.39) which are products of constants and w ~or wy
cause torques of freqﬁency aswo about each axis. The constant terms
are cancelled as body-fixed torques. The multiples of Tx and Ty produce

constants plus sinusoidal terms of frequency 'wo. The torque Tz due to

the applied control is

T =m'B - m'B
z X'y y X

1 . .
= - E; [— TBy sin ¥ + TBx cos U + TIX]
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for the two-coil controller. Hence, multiples of this term also cause
constant inputs and sinusoidal inputs of frequency ¢o' Therefore, the

frequency response analysis again is applicable here.

Noisy Star Tracker

The problem of noisy star-tracker measurements of 7# and 7y
is now analyzed. 1In particular, the equations which define the co-
variances of the estimates of the other system states are derived for
the Gopinath reduced-order observer. It is assumed that the noise nn
of each star-tracker readout can be described as independent Markov

processes with equations

Ny = —Bnnn + v (4.40)

where v 1is white, stationary, and Gaussian, and 5n is a positive
constant. Such a noise process describes the speed of a free particle
under Brownian motion,or the voltage across a capacitor in parallel with
a resistor producing a white noise voltage (Johnson noise), which is
typical in many instruments.

From Figure D.1 of Appendix D, if the input to the observer is

§1 + ?L, the output is
¥ = §2 + Lﬁ; ,
where
Xy = 2+ LX)
and z has the state equations
2 - (Fy, = LE, DG + ) + (Fypy = LF (@ + Ix, + L)

_9
+ (GZ - LGl) u .
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Also recall that the actual system equations are

- = ~> -
Xl = F11X1 + F12 2 + Glu ,
> - - —
XZ = F21 1 + Fzzx2 + qu .

If the output error is defined as

- - -
& 7% 7Y

H

then its time rate of change can be shown to be

=

> - -
= - - - - .41
¢ = (Fpg = LFp)eg = (Fyy - LF M, - L0, 4.4
using the previous equations. 1If one defines E; = E: then Egs. (4.40),
(4.41) can be combined into the matrix form
ﬂ 7 B
-3 , -
o1 (FypmlFip)  ~ i IE D L
= + [V]  (a.42)
~3 -
e% 0 Dn ez 12
where - o -
_sn
D = .
n
0 -
6n
- ,
In simpler notation, (4.42) becomes
= Fe+ GV . (4.43)

If P2 is defined as the covariance of the error, i.e.,
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and Q 1is the covariance of v, that is
—> =T
E{v(t) v (T)} =Q8(t - 1) ,

then the covariance P2 has the well-known time derivative

, T T
b, = FP, + P,F + QG . (4.44)

P(t) has a closed form solution (Ref. 58) found by defining the matrix

Ny Mo

Y1 o

which has the equation

A = AlA, AO) =T .

If the matrix A has the form

1
--FT 0
A = ) ,
GQG F
then \
Pz(t) = A21A§2 + A22P2(0) A’;Z . (4.45)
A(t) has the solution
e -1 -
(sI+F) ' o
-1 1
At) = & e (4.46)
1
L(sI-—F)_lGQGT(sHFT)a (sI—F)_1
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The steady state solution can be found for zero initial conditions by

examining
T
P2 = A21A22 . (4.47)

A steady state solution exists because the characteristic equation of
(4.42),

2
(s + Bn) (s1 - F22 + LF12) =0 ,

has eigenvalues with positive real parts by correct choice of the

matrix L. If P2 is defined as

P2 = E S ?ir ’

then from Eq. (4.44), its time derivation can be shown to be

/

. T T
P, = (F22 - LF12)P2 + Py (Fy, - LF12) + LQL
q T
1 2..T T -1
- E'é; G LL o+ 2BnLF11L )[(F22 - LF12 - Bn:[e) ]
(F,, - LF,_ - BI )-1 ('-zLLT 28 LF_ L) (4.48)
+ oy 12~ Pu'e ¥ + 2B ’ .
where
q 0
1
A
Q = ’
0 q1

and & is the spin speed. Equation (4.48) also is in the form of

Eq. (4.44), so its solution may be found from Eqs. (4.46) - (4.47). Be-
cause (4.48) is linear in P,, the steady state solution may be found
by solving the resulting 15 algebraic equations resulting from setting

Pz = 0 and using a particular choice of the observer gain L.
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To minimize the effect of the noise inputs for a reduced-order
observer, the matrix L should be chosen so that the maximum eigenvalue
of P2 is minimized. Denoting the maximum eigenvalue of covariance
P as

A @ 2P,
max

it was shown by Singer (Ref. 76) that this has the upper bound

2 4 -1,2 T
9] < l[ull g‘ljamlx lleqa ||

(4.49)

for an equation such as (4.44) at steady state. Here U is the matrix
which diagonalizes F and Oaax is the maximum real part of the eigen-
values of F. This laborious process can also be applied to (4.48).
There doesn't seem to be a tractible solution useful for making a direct
choice of the matrix L to minimize HP2”. Thus, its selection will
have to be based upon a cut-and-try procedure.

The alternative method for evaluating the effect of noisy star
tracker data is to perform simulations of the system with noisy measure-
ments. If the measurements are too noisy, of course, improvement can
always be obtained by using a Kalman filter in place of the reduced-

order observer, as was done in Chapter III, 7

SUMMARY

It has been shown that it is theoretically feasible to magneti-
cally control the spin axis of a spinning satellite to point at a star
with an extreme degree of accuracy. Iﬁ particular, for a star tracking
satellite in a circular polar orbit, the spin axis can be maintained
within 0.01 arc second for greater than 90 percent of the period of the
orbit. This accuracy can be achieved during normal mode operation by
either using a three-coil or two-coil mechanization. The results were
based, of course, upon the assumption of perfect noiseless startracking

capability, magnetic~field measurement, and control actuation.
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During the spin control mode of this satellite, the pointing accu-
racy never deviates beyond 5 arc second under worst-case disturbance
torques. The spin speed deviation during the entire orbit can be kept
below 0.003 rad/sec.

The key to providing the extreme accuracy capabilities is the fact
that inertially-fixed torques, body-fixed torques, and pulse torques
from translational jets are observable quantities. A modified version
of the Gopinath reduced-order observer for noncyclic, non-controllable
systems was developed and used to estimate these disturbance torques
in addition to the vehicle rates. A new control law based upon the
disturbance torque estimates was used to cancel their effect and to
drive the satellite state to zero.

A qualitative error analysis was performed to determine the effects
upon the controller's performance of misaligned magnetic coils, mag-
netometer errors, deviations of the satellite inertial properties from
those modeled in the observer, and a noisy tracker. Actual quantitative
error evaluation depends upon having a more complete description of ac-
tual satellite and control system parameters.

Although a relatively precise control system was studied in Chap-
ter III, the vast improvement inthe pointing-accuracy capability of the
system studied in this chapter must be noted. Again, the improvement
is due to the assumed presence of an accurate star tracker which can
simultaneously measure pointing errors about two orthogonal axes.

In conclusion, it can be stated that magnetically controlling a
spinning satellite to precisely point at a star -compares very favorably
with other types of preéision control for periods of up to thirty min-
utes during an orbital period. The chief limitation to this and any
other precision controller for the‘satellite considered here seems to

be the accuracy limitations of the star tracker.
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CHAPTER 5

THE CONTINUOUS ATTITUDE CONTROL OF RIGID NONSYMMETRIC

SPINNING VEHICLES

In this chapter, the general orientation control of the spin axis
of a nonsymmetric spinning vehicle will be investigated. The following

general assumptions about this vehicle are made:

The nominal spin axis is the maximum or minimum axis of inertia.
2. The other two principal axes of inertia are also the vehicle
control axes. Control torque is applied continuously to these
axes.
3. The nominal spin speed is much greater than rates about the
lateral axes of the vehicle. This allows the linearization
of Euler's equations from which derivation of the control law

follows.

This control method can be used for any spinning vehicle and is partic-
ularly relevant to magnetic control of spinning satellites. It is appli-
cable to both the satellites which served as examples for Chapters III and
1v.

The particular advantage of relaxing the requirements of satellite
symmetry is that of ease in design and manufacturing. The disadvantage,
from a control designer's standpoint, is that the system parameters no
longer can be treated as time invariant. The method developed here essen-
tially transforms the system equations to a set which is time invariant

and, thus, greatly simplifies the choice of control law.

THE LINEARIZED EQUATIONS OF MOTION AND THEIR OBSERVABILITY

From Chapter II, the rotational equations of motion of a rigid body
as coordinatized along the body-fixed principal axes are the Euler equa-

tions:

Co:—l—T+(1 - I Jww , (5.1a)
X IXx X vy zz Yy 2

179



e
Il

1
= [Ty (I - I )w wz] , (5.1b)

y XX~ X
yy

O = - T + (I -1 Jww (5.1c)

Z—-Izz[z XX vy xy]' =c

With the assumption that the rate about the spin axis wz >> W or

wy and Tz = 0, Egs. (5.1a-b) can be linearized to

wx = TXl - Bswy R (5.2a)
® =T _ +Aw ., (5.2b)

Here,

Ty = Tx/Ixx !
Toy = Ty/lyy ,

A= (1, - IXX)JI/Iyy )
By = (I, - LWL,

where V is the nominal spin rate wz. For small angular displacements
@ and 6 about the inertially-fixed §I and §I axes, the two addi-

tional kinematic equations of motion are

ey
li

w - w gi .
. cos s y sin V¥ , (5.3a)

[y
1]

3 ! w .
w_ sin v + v cos V¥ , (5.3b)

where V¥ is the angle &(t~to).
Equations (56.2) - (5.3) are somewhat general. Little effort is re-
quired to transform them to the equations used in the local frame employed

in Chapter III or the body frame employed in Chapter IV.
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This is basically a time-varying fourth order system which is to
be analyzed. It is assumed that the four states (wx, w, ¢, and 6)
are available from which to generate the control torque. Their avail-
ability is dependent upon the vehicle system state being completely ob-
servable.

The following definitions and theorems from Silverman (Refs. 59, 60)
provide the information necessary to determine the degree of observability

of a system with time-varying coefficients.

Definition 5.1. Complete observability - (Ref. 59). The class of systems

described by a finite set of first order differential equations of

the form

X(t)

il

F(t) x(t) + G(t) u(t) , (5.4a)

y(t) = H(t) x(t) , (5.4b)
is completely observable on an interval (to, tl) if any initial
state X, at to can be determined from the knowledge of the sys-

tem output y(t) and input u(t) over (to, tl).

A system is further said to be uniformly completely observable if it is

completely observable over every subinterval of all time of system oper-

ation.

Definition 5.2, Observability matrix - (Ref. 59). The observability

matrix Qo(t) is

v 1
Q, () = [So(t): S, (£) ==- :Sn-l(“] , (5.5)

where
T
So(t) = H (t) ,
and

T
sk+1(t) = F (t)Sk(t) + sk(t) .

4
dt
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These definitions are used to prove the theorems:

Theorem 5.1. ~ (Ref. 59). The system with Eqs. (5.4a-b) is completely
observable on the interval (to, tl) if Qo(t) has full rank for

some t contained in (to, tl).l

Theorem 5.2. - (Ref. 60). If the system (5.4a-b) is periodic, then it
is uniformly completely observable if and only if it is completely

observable.l

This last theorem demonstrates that it is only necessary to show
that a periodic system is observable at one point in time to conclude
that it is observable for all time. It has immediate application to the
equations of motion of the spinning vehicle.

It is interesting to note at this time that special conditions arise
when there exists an observability advantage of a nonsymmetric vehicle
over one with mass symmetry about the spin axis as considered in the pre-
vious two chapters. Recall that it was mentioned in Chapter III that if a
symmetric sateliite had roll error (§L-=axis) measurement only, a con-
stant torque about the yaw axis was unobservable. For the nonsymmetric
vehicle, the state equations of the system with constant moments of tor-
que about the reference axes associated with the local (L) reference

frame are

r — RO @ — r— waaey r— oy
0 0 0 o0 0o 0
T ¥ 0 T
T -y 0 0 0 o ofl]|T 0 0
Ly v Ly
& 1/1 0 0 -B 0 of|w 1 offr
X XX s X x1
= +
& 0 1/1 A 0 o of]w o 1f|T
y vy s y vyl
o 0 0 cos ¥ -siny¥ O =nl]e 0 0
b 0 0 sin V¥ cos V¥ -n 0 ® 0 0
e R JL" 4 L O
[6] = [o o o o o 1][x]. (5.6)
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Here, TLx and TLy are the constant disturbance torques. The obser-
vability matrix (5.5) has full rank at all time for Egs. (5.6) when
I £ 1 (and A # B ). Thus, in this instance the system is mathe-
XX vy s s
matically observable, whereas a similar system with equal lateral mo-
ments of inertia (I =1 ) 1is not.
XX yy

From the practical standpoint, the usefulness of the above results
applied to the satellite system of Chapter III seems tobe limited by the
accuracy of the initial conditions provided to the state estimator. If
the initial wvalues of (wx,wy,w,e) are well known, computer simulation
demonstrates that the estimator works well from roll error 6 iﬁput
only. Conversely, with initial values of (wx,wy,Q,G) poorly known,
erroneous estimates of the disturbance torque components TLx and TLy
result. This seems to be a case of ill conditioning on the part of the

system matrices of (5.6) because of the smallness of the parameter n.

CONTROL LAW SYNTHESIS

The method of control synthesis for spinning nonsymmetric vehicles
which follows is basically an extension of the method developed by Lange
(Refs. 26, 61) for symmetric vehicles or systems with equations possess-

ing frequency symmetry. Define

e

(BS/AS) )

o]
1i

w_ + jDb w ,
X sy

e
1l

jiD T
n Txl * JDs

b

vyl

ne

NI
(BA /¥
Then Egs. (5.2a~b) can be combined into the complex equation,

Y - iNVq = 5.7
a9, JNSﬂfqn T, ( )
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by multiplying (5.2a) by jD and adding it to (5.2a). Also, from Egs.
(5.3)

(O + 1) , (b - 1) .
_ s A S | 2 A L
qQ, = 5 @ + j6)e 2 (¢ - jo)ye" " . (5.8)
Let
o + 1)
A ,
p, = 5 @+ jo)
o -1
AN s
m, S — (@ - 30)
Then, Eq. (5.8) becomes
IR AT 1
a, = pe m_e . (5.9
Thus,
n o Jv . _Jj2V ,
ps = qne + mse . (56.10)

Taking the derivative of (5.10) and using (5.7) and (5.9) yields
SN s1)i L ‘. ) 2y Jv
- d = - -1 = . 5.11
[ps J(N+1 )llfps i - JINg )wms]e T,© ( )

Now, letting

—j(Ns+1)W/2

r & P e ’
s -8
and
A —J(Ns—l)ﬂf/z
s, =me s
s s
Eq. (5.11) becomes
2 2
j -1 j . 2 .
. (N_+1) \Irzr eJ(NS+1)\lf/2_ L, (¥ _-1) q’}zs eJ(NS+3)1|f/ Y
s 4 s Is 4 s T 'n :
(5.12)
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Jv

The quantity Tne represents the control torque. Let this be set to
j(Ns+1)W/2 j(NS+3)W/2

Tne = (—Klrs - Kzrs)e + (K3SS + K4ss)e

Then (5.12) becomes

2:2 .
) (Ns + 1)V J(NS+1)W/2
rs + KlrS + K2 + 7 rS e
2.2
. (NS -y J(NS+3)W/2
-1s + Kgs + K4 + —g sS e =0, (5.13)

when no disturbance torques act upon the system. For (5.13) to equal

zero for all time,

(Né + 1)2\31'2
¥ +Kr + |k, + —m——————] r
s s

il
o

< 1 5 T (5.14a)

2.2

(N - 1YY
§ +K,5 + (K +— s
s 3"s 4 4 s

Thus, the selection of a control law for the nonsymmetric system

1]
o

(5.14b)

consists of choosing four gains (X, ,K_,K_,K ) to give the desired

1’72734
response to two uncoupled harmonic oscillators [Eqs. (5.14)] in a trans-
formed coordinate frame. That the transformation to this coordinate
frame exists is known from the theory of matrices (Ref. 62). Any linear

system

where F has periodic coefficients is always reducible to one with con-
stant coefficients.
With the choice of gains being made, the applied control in the

®-6 coordinate system becomes
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s . (N_+1) (D_+1) s
= [-K. —————— i0) - - jK, ———— —_— j
T K (f + jo) <K2 JKy 5 \9 5 (P+j6)|e

® -1 . W-1) )\ (®-1) v
+ By =5 @ - 30) + K, - Ky —5— V] —5— (® - jO)e""

3 2
(5.15)
which is the complex control law. In real form, this becomes
(5.18)
where 7x and 7y (the star-tracker variables) are defined as
7x = @cos ¥ + 6 sin V¥ ,
7y = ~-Qsin ¥ + 6 cos ¥ .
With the choice K1 = K3 and K2 = K4, the real control law is
(NSDS+1)
Txl = —Klwx B szk B K1 2 Wyy ?
(NS+DS) .
= - w - . -
Ty1 K1 y K27y + K1 ZDS Wyx (5.17)

When IXx = Iyy’ DS =1 and (56.17) reduces to the results of (Ref. 61).
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An example serves to illustrate the utility of this control synthe-

sis. Consider a vehicle with moments of inertia

2
IXX = 3.08 kg-m ,
2
I =-9.24 kg-m
vy g y
2
= 10. o
Izz 0 kg~-m ,

nominally spinning about its Z axis at one rad/sec. Without Egs. (5.186)
one might attempt to control the spin-axis orientation by using a control
law for an axisymmetric spinning body. An average value of the lateral
moments of inertia could be assumed.

in (Ref; 61), the power optimal control for a symmetric spinning

vehicle with no nutation damper was shown to be

R
SWKV

1
= - Gl - — ——
Ter ™ Ko 7 Ko7 5 Ty
R VK
T = s_vi, (5.18)

- W - - PSR, ot
K K17y + 3 e

yl vl y

where RS is the moment-of-inertia ratio
R =1 /I

S ‘ZZ XX

The choice of gains for power optimal control (see Ref. 61) is

N 4
NGO GOAN
ol = 2 2 4

vl —’JEE;l :

>
l

=
|

These come from optimizing the cost function
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t

il
1 2 2
Jf =3 .[m (gx” + T7) dt

This function applies to the harmonic oscillator equation

. 2
X+ 8 x=T
s
that governs the dynamics of a symmetric spinning vehicle. In this

example, it is assumed that

The optimization analysis can also be applied to Eq. (5.12) (which
represents two uncoupled harmonic oscillators) for determining the gains
Kl’ KZ’ KS’ and K4 in Eq. (5.13),but the resulting control law tEqs.
(5.16)] is strictly suboptimal.

A simulation was made of a vehicle with the above moments of inertia
and the control laws (5.16) and (5.18). The optimum gains KV1 and Kp1
were used for (5.18). 1Initial conditions were

w = 0.1 sec"1 s
p:S
w—_jO

y

¢ = 0.1,

e = 0.1.

The control law (5.18) (based upon aVerage lateral moments of inertia)
did not produce a trajectory which converged to the origin. On the other
hand, control law (5.16) always produces asymptotic stability if the

gains K1 to KZ are positive.
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CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

In conclusion, the synthesis procedure developed in this chapter

has the following distinguishing points:

1. This technique allows the designer the freedom to choose the
dynamic response that is desired to remove small attitude
errors of an unsymmetric vehicle's spin axis.

2. This control can be continuously mechanized with constant
gains.

3. The vehicle designer thus has more freedom to build an
unsymmetric spacecraft intentionally. This freedom might ease
the design tolerances in vehicle construction. Possibly it
can provide the means for obtaining more precise control by

making the disturbance torques fully observable.

This chapter by no means exhausts the possibilities for further
study of continuous precision (including magnetic) control of nonsymmetric
spinning vehicles. Cross—product-of-inertia terms and arbitrary nutation
damping coefficients may still need to be taken into account in the con-
trol synthesis. A determination of power optimal control by a means
less cumbersome than numerically solving the matrix Ricatti equations
is highly desirable. Also, a demonstration that the control laws (in-
cluding those of Chapters III and IV developed to remove small attitude
errors produce asymptotic stability for large misalignﬁent would be val-

uable for some spacecraft applications.
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APPENDIX A

MATHEMATICAL MODEL OF THE NEAR EARTH MAGNETIC FIELD

A requirement for analyzing the earth's magnetic field for attitude
control purposes is to have an adequate model of the field. The method
of mathematically modeling the near-earth® magnetic field used today
follows the work of Gauss and applies potential theory and spherical
harmonic analysis. Discussions of this modeling can be found in Refs.

63, 64, and 65, and are summarized here.

It is assumed that if a region is removed from the magnetic sources,
then the magnetic field ﬁ of that region is the negative gradient of

the magnetic potential Vm of the sources,

B = -W . (A.l)

PV = 0 . (a.2)

The solution for this potential which describes the near-earth magnetic

field is given as

[ n

v, o= ag Z Z P:(cos ep) {{ginm(ae/R)n-l-1 + genm‘(R/ae)n] cos mq,
n=1 m=0 ’ (A.3)

+ [h,-f(ae/R)““L + he:(R/ae)n]sin mCPp} :

Satellite measurements have revealed that below synchronous altitude,
the geomagnetic field strength is reasonably close to an earth-centered
dipole field. Beyond this distance, the effect of the teardrop-shaped
magnetosphere begins to be felt., See Ref. 6k,
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where

aq = the mean earth radius;

R = the distance from the geocenter;

suffixes i, e .
sources internal and external to the earth;

on g and h
satellite position's earth-fixed colatitude
®_ and O = .
P P and east longitude;
P: (cos Qp) = multiple of the associated Legendre function;

coefficients corresponding to the multiple and
are selected to yield the best possible fit to
measurement data of the magnetic field.

m m =
gn and hn =

In the literature, the associated Legendre functions are usually normal-
ized according to methods of Gauss or Schmidt [Ref. 63]. The latter
‘normalization is utilized here because it seems to be the more prevalent
one, (Care should be exercised when using published magnetic coefficients
gﬁ“and h;n to insure that they are normalized to the corresponding
multiple of the associated Legendre function used.) The Schmidt normal-

ized associated Legendre function is expressed as

8 (n+m)INE o8 v(pnom)t
m > -( )t sinme cosn—-m6 _ {n—m)(n-mvl)

P:(cos ep) =<

\ . P 1 2{2n~1
2(n-m)? (2n)! (2o-1) (a.b)
X cosn-m_ge + (n—m)(n—m—l)(n~m—2)(n—m—3)cosn—mvhe A )
p 2 « 4(2n-1)(2n-3) P

where Sm =2 for m = 0 and = 1 otherwise by the convention used in Ref,
63.
The Gauss normalized coefficients Pn’m(cos ep), which are employed

in Ref. 65, are obtained by the relationship

n,m _[2(n-m)} % (2n)! moos
P (cos ep) - (6m(n+m)!) 2%nt(n-m)! P ( 6p>. (a.5)

The main field is that portion of the geomagnetic field which
originates within the earth. It represents greater than 99% of the
measurable field and has a secular change of about 0.1% per year, The

weak fields originating outside of the earth are quite variable with
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fluctuations in periods of a few days or less. These fluctuations are
discussed later, The extrapolated values of the main field can be
considered correct up to synchronous altitude and time-varying external

fields may be superimposed upon it.

Figure A.l1 shows the components of the geomagnetic field and their
associated angles. Here, B is the intensity of the field and Xm, Ym,
Zm are its components with Xm pointing northward, Ym pointing east-

ward, and Zm pointing downward.

FIG. A.1. COMPONENTS OF THE GEOMAGNETIC
FIELD AND THEIR ASSOCIATED ANGLES.
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Also, Im is the inclination or dip angle, Dm is the declination
angle, and Hm is the horizontal component. From Egq. A,1, the compo-

nents are found to be

X = 1l OVm
m - R OB
P
s dPE m n+2 1
o _n : m n~-
= :E: 7 [ghl(ae/R) + g (R/ae) ]cos m@p (A.6a)
n=1 m=0 p
+ [y ™ Ant2 m n—l] .
[ in (ae/R) +h (R/ae) sin mp ¢ .
y = 1 - Owm
m R sin o
Qp &513
Onax 1 um @ )
m n m n- .
- Y wmte | [ e/ g /e,) | sim w0, (a.60)
n=1 = p
m n+2 m n-1
- [hin (ae/R) +b (R/ae) ]cos me,
_ Ovm
2, = 3R’
max 2 ' m n+2 m n 1]
m , -
= X L [-gnl(n+l)(ae/R) + %aln(R/ae) cos mp
=l m= (A.6c)

+{‘hh?(n+1)(ae/R)n+2 +-EH?(R/aé)n-l]sin m¢p .

>

The magnitude of these components is commonly in gammas where 10

gammas = 1 gauss, the unit of induction.

A full set of the Schmidt normalized coefficients g_ o g mh. m
m in ’ en '’ in ’
and b, up to degree and order n=m=12 can be found in Ref. 66 for

epoch 1965.0.
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However, there are good reasons from the attitude control application
standpoint to ignore the effects of external sources (the ge and he
coefficients) and use coefficients which are found by fitting the data
to a model which assumes that the potential is due to an internal source
only. First, satellite measurement data of the magnetic field are
small in number compared to the amount of earth surface data. Secondly,
the strength of measured external field sources is small (less than 1%
of internal source) as can be seen by examining the coefficients of Ref.
66 for near-earth regions. Also, little has been proven as to the defi-
nite field contributions of the external fields. Finally, eliminating
the external static contributions to the field considerably reduces the

computation required to determine the field components.

When mechanizing Eqs. {A.6a) through A.6c) on a digital computer, a
great deal of run time can be saved by making use of several recursion

formulas which relate the terms of the summations. For ep # o,m use

0
Po = 1 (a.7a)
o
= A.Tb
P cos ep s (A4.7b)
0 2k—1) o k-l) 0 . (A.7c)
Pp = ( K °s 8, Pr1 ( %) Px2
1 . '
P, = sing , (a.8a)
1:< ox-1\F k-1
= (=== - > ; A.8b
P ( o ) cos 6 p ] for k>2 ; (A.8b)
k-1 H k-1
P = (2k-1)% cos o, Py for k> 2 , (A.9a)

P:+1 [(2n+1)cos eppi _(n2_k2)% Pﬁ_l]/[(rﬁl)g-ke]% (A.9b)

for n >k+ 1 ;
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d_ o0 [ £ 1
TN P = ——%n(n+1)]2 P s (A.lOa)
P -
A K . ") (n+k) (n-k+1) %Pk_l 2| (n+ik+1) (n-k) %Pkﬂ
dg = 7|8y, ntk)in- TR n- n
for kK >0 ;
k
kP 2 3
S S} - k-1 1 _ e k+1
Sn o = 2{8k_1(n+k)(N+k 1)] Pl 2[(1: k)(n-k 1)] P31
(A.11)
for k>0 ,
where
2 k=1
) =
k-1 1 k> 1
For «ep = 0,7 wuse the following:
For © = O p0 = 1 ; {a.122a)
p n
n
For o = @,~ pO = (-1) . (a.12b)
P n
pX - o, for k>0 (A.12¢)
n
Also,
4K - 0 for k =0, (A.13a)
d86 n
P
2 0
= 3[2n(n+1) J® P for k=1, {A.13b)
= 0 for k >1 (A.13¢c)

1986
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and

kPﬁ
-S—i—n——e—_ = 0 for k =0, (A.1ka)
P
3 0
= 3[en(n+1) " P | for k=1, (A.1bb)
= 0 for k >1 ., (A.1ke)
Xm, Ym’ and Zm are multiplied by 10"9 to convert from gammas to
Webers/m2

A suitable set of Schmidt coefficients of the geomagnetic field
are those of Ref, 67 which are presented in Table A.1. The coefficients
and their derivatives are in gammas and gammas/year and are for epoch
1960.0. They represent 197,000 observations fitted to an assumed inter-

nal source potential with a mean earth radius (ae) of 6371.2 km.

VARIATION TO THE SLOWLY CHANGING MAGNETIC FIELD

The quantities which cause the earth's magnetic field to be dis-
torted from that of a static symmetric dipole include those which are
classified as (1) sun-line distortions, (2) secular variations,

(3) diurnal variations, '(H) daily lunar Vafiations, (5) magnhetic storm
disturbances, and (6) local irregularities. The sun-line distortion

is the tear-drop distortion spoken of earlier with the effect that the
field lines are compressed in the subsolar direction and spread apart
into a tail on the opposite side of the earth., This effect is insig-
nificant, however; for distances, less than 5 earth radii. At syn-

chronous altitude, the distortion in magnitude can be as large as 25%.

The secular variations in the geomagnetic field are accounted for
by using the first-time derivatives of the Schmidt coefficients
(gnm and hnm) as given in Table A.1 to update the coefficient to the

epoch of interest. Use
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TABLE A.1

SCHMIDT NORMALIZED HARMONIC COEFFICIENTS OF THE
GEOMAGNETIC FIELD (EPOCH 1960.0) IN UNITS OF GAMMAS AND GAMMAS/YEAR.

Degree Order m m « M s m

n m gn hn gn hrl

1 0 -30425 -0  20.6 -0,

1 1 -2162 5775 6.0 -3.9

2 0 ~1536 -0 -29.1 -0.

2 1 3000 ~1950 1.2 -13.7

2 2 1585 20k  -0,7  -15.8

3 0 1301 -0 2.7 -0,

3 1 -1987 =431 -10.0 6.5

3 2 1290 231 1.6 2.9

3 3 871 -130 -1.3 -9.2

L 0 958 -0 -0.9 -0.

i 1 803 152 1.9 -1.8

b 2 503 -268 -1.2 -1.5

L 3 -394 3 -0.5 3.2

L b 271 -251 -k .2 -5.5

5 0 -228 -0 2.6 -0.

5 1 360 9 -0.1 3.0

5 o 231 121 1.5 2.9

5 3 -31 -116 -0,k -1.9

5 L -157 -110 -0.7 1.2

5 5 -65 80 1.6 0.8

6 0 50 -0 -0.7 -0.

6 1 61 -12 1.0 -1.4

6 2 5 103" 0.8 0.1

6 3 -2k2 61 2.1 1.5
@ 6 u -1 -27 1.6 "Oa7

6 5 0 -12  -0.1 ~0.1

6 6 -109 -12 0,1 O,k

7 0 71 -0

7 1 ~57 -5k

7 o) 6 -2l

7 3 8 -9

7 L -2k 2

7 5 -2 28

7 6 14 -21

7 7 6 =20

8 0 5 -0

8 1 7 7

8 2 -9 -12

8 3 -1h 6

8 Ly -2 -17

8 5 7 3

8 6 -6 2L

8 7 2 -3

8 8 6 -16

g 0 10 -0

9 1 3 -22

9 2 7 16

9 3 -16 5

9 i 11 L

9 5 11 -2

9 6 1 10

9 7 -0 12

9 8 2 0

9 9 2 -3
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gnm(ty) = ,"(1960.0) + (t - 1960.0)¢ ™ (A.15)

and a similar expression to update lﬂ?(ty) with ty being the epoch in

years,

Diurnal variations due to the sun result in cyclic variations of
the field magnitude of up to 200 gammas. Near the earth, this vériation
is small compared to the total field and can be neglected from the con-
trol analysis standpoint. At distances of several earth radii, inguffi-
cient data is available to make any conclusions. The daily lunar
variation can cause amplitude variations reaching 12 gammas but this

also is small enough to neglect.

Theories-exist on the cause and behavior of magnetic storms and
their relationship to electric current systems in the lower ionosphere
and the equatorial ring current which supposedly encircles the earth,.
However, because there is no general knowledge of the storm-time
variations nor a general description of the ring current, geophysicists
have found it impossible to include the storm effect in a model. During
great magnetic storms, field variations can amount to 3500 gammas (or
more than 5%) in the polar regions. Rapid variations of the magnetic
field ranging in duration from a few minutes down to 0.1 seconds called
'micropulsationg’ also occur. Amplitude of these variations seem to be
directly proportional to their duration. Fluctuations of up to 300
gammas have been recorded foridurations of two minutes although the

average fluctuation in amplitude is 20 gammas.

Local irregularities iﬁ the geomagnetic field are taken into account

by using more than three terms in the harmonic expansion for the field.

It can be concluded that though variations exist in the earth's
magnetic field, they can be usually neglected because they're small or

can be taken into account by using a sufficient number of terms in the
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harmonic representation of the field. Since this study is concerned
with sub-synchronous orbits, the sun~line distortion can be neglected.
Regarding the large variations due to magnetic storms, one can take the
point of view that a magnetic control system should be made of suffi-
cient power that it functions adequately in the presence of the weakest
magnetic field probably encountered during an orbit., Thus, by design-
ing the system so that it has a factor of safety in power over that re-
quired for operation in the average field, the fallibility of the

magnetic model can be neglected.

FURTHER SIMPLICATION TO THE FIELD MODEL

When investigating the use of the magnetic field in conjunction
with attitude control of spacecraft, it is often desirable to reduce
the complexity of the field model. Using a simpler model results in
easier visualization of the field characteristics. Also, a simple model
often allows analytical solutions to questions which arise concerning

the effect of the field.

The mathematical models of the geomagnetic field which have been

used by control systems analysts include:

1. Constant field. Here one assumes the magnetic field is con-
stant in magnitude and direction for a short duration of time,

2. Linearly changing field. The magnitude and direction of the
field vector changes linearly with time,

2, Simple dipole. This model assumes the magnetic dipole lies
along the eart%;s spin axis and points south, The potential
used is V = g," cos ep(ae /R2) ,

4, Tilted dipole. This is the most common model used. It uses
the first three internal source terms of the potential given
by Eq. A.3. The terms gjlag3 and hyla 3 represent dipoles
lying in the equatorial plane and p01nt1ng toward 180° and
90°E longitude respectively., The resultant of the three
orthogonal dipoles Boae3 has a magnitude

2|
B, = /(glo)z + &bH% e ob

and a polar angle @0 -1 (g /B(Q The equatorial component

1
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points toward longitude @ = tan~! (hll/g11L The point
(ae,®o,@o) is the South geomagnetic pole. Its opposite,
the North geomagnetic pole is approximately located at
79°N latitude {11° colatidue) and 69°W longitude. The po-
tential of the tilted dipole is V, = B_(a3/R2) cos 8

where 6 is the geomagnetic colatitude, Then the geomag—
netic north and vertlcal components are Xm~Bo(ae/R) sin B

and 2, = 2B (ae/R) cos By -

5. Quadruple model. This model includes the first eight terms
(up to Dpax = DBpax = 2) of the spherical harmonic expansion
of Vp. Luke [Ref. 64] in his error 9na1y51s, uses the
criterion that an acceptable model is one in which the magni-
tude and angular deviations of the field from that of the
measured field are always less than 5% and 3° respectively.
With this criterion, he concludes that for final analysis
purposes, the tilted dipole is adequate at distances beyond 5
earth radii and the quadruple model is adequate beyond 3
earth radii. He recommends that below 3 earth radii, the
full harmonic expansion model be used.

The decision of which model to be used at different points in the

system design effort is largely one of judgment on the part of the analyst.

A mathematical average of the magnetic field components found in a
circular orbit of variable inclination and altitude is shown in Fig. A.2.
This figure, taken from Ref. 9, has the components coordinatized in
the local (L) frame of Fig. 2.2. Figure A.2 is useful for estimating

control gains and performance characteristics.
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FIG. A.2, AVERAGE VALUE OF LOCAL COMPONENTS
OF THE MAGNETIC FIELD FOR CIRCULAR
ORBITS BASED UPON A SIMPLE DIPOLE
MODEL:.
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APPENDIX B

DENSITY MODEL OF THE ATMOSPHERE ABOVE 120 KM

The atmospheric models derived from the analysis of satellite drag
data of the recent past are variable in nature, in that density is a
function of the height above sea level, the relative position of the
sun with respect to the given point, and the energy being emitted from
the sun., Models which account for the various fluctuations in density
due to variables other than altitude change are termed "dynamic" models.

Factors which affect the value of density in a dynamic model include:

The day-night effect,
The 27-day solar effect,
The ll-year solar cycle effect,

The semiannual effect, and

Ul oE oW Y=

. The magnetic storm effect.

Various models which account for each of these effects to some degree

have been summarized by Bruce [Ref. 68].

The day-night or diurnal-bulge effect is due to the sun's ultra-
violet radiation being maximum near the subsolar point. This radiation
causes the atmosphere to heat and the density to increase. The result-
ing bulge lags the sun's path by about 30° in longitude (2 p.m. local
time) because of the time required for the atmosphere to adjust to the
heating. The bulge effect is not symmetric, however, and the minimuﬁ

density (above 300 km) occurs on the dark side at about 4 a.m.

The sun's extreme ultraviolet emission is erratic in nature but
tends to correspond to the sun's 27-day period of rotation. This
emission, which also causes density fluctuations of the high-altitude
atmosphere, is correlated with the 10.7 cm decimetric flux (2800 Mc)

-22

2
from the sun., This index, expressed in units of 10 Watts/m /cps

bandwidth, is denoted by F10’7.
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The monthly average of the decimetric flux, denoted by FlO 72
is correlated with the 1ll-year solar cycle which causes a slowly fluc-

tuating corpuscular emission known as the solar wind, ranges

Flo.7
approximately between 70 and 280 during the quiet and active periods of
the solar cycle. Figure B.1 taken from Ref. 69 shows the F10'7 index
average between the years 1947 and 1961. This effect can cause a varia-
tion in densify by a factor of 3 at 100 n. miles altitude and even a

greater effect at higher altitudes.

The density variation with annual and semiannual components known
as the semiannual or plasma effect has also been hypothesized to be due
to the solar wind. Figure B.2, also from Ref. 69, gives an indication

of thig effect for a 350 km altitude satellite over a four-year period.

The largest short-term fluctuation of the atmospheric density is
due to magnetic storms. The 3-hour magnetic activity index ap expressed
in units of 2Ym(Tm = 10-5 gauss) normally fluctuates between O and 30

but can go as high as 40O during an intense storm.

Each of these five effects along with altitude variations has been
incorporated into a model developed by Jacchia [Ref. 70] which is sum-
marized here. The basic idea is to determine empirically the atmospheric
temperature’at a point as a function of the parameters‘ F10.7’ 510.7, ap,
the day of the year, the local solar time, the latitudes of the sun and
the point in question, and the altitude. Then with a fixed set of
boundary conditions at the altitude of 120 km, the concentration of each
of four gases are found at the point by integrating the static diffusion

equation

dni dh dTm ( ) ( )
-4 = . 2.1 +qa). B.1l
n, H, T d
i i m
Here, n, is the concentration of each of the gases N2, 02, O, and He,
(the effect of hydrogen is also brought in above 500 km); ha is the

altitude, Tm is the temperature, and Qﬁ is the thermal-diffusion
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FIG. B.2. ANNUAL AND SEMIANNUAL RELATIVE ATMOSPHERIC DENSITY VARIATIONS.
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factor. Hi is the scale height of the individual element defined as

2
. KT ) kBTm(1+ha/ae)
i = m, B m.g
i1 e 1 eo

’ (B.2)

B
mass of the element, and ge is the gravitational acceleration which is

where k is the Boltzmann constant, m, is the molecular or atomic

a function of ha' Because this model is based on fixed boundary con-
ditions at 120 km, there may be some doubt as to its usefulness for
lower altitudes (€200 km). However, Jacchia compared his model with
the results of Small [Ref. T71] and found excellent agreement between

130 km and 200 km for low-inclination orbits.

Since the time Jacchia published his results, data from flights
of the Explorer 19 and 24 satellites in nearly polar orbits gave further
information on density variations in the polar regions. Keating and
Prior [Ref. 72] used the results of this data to modify Jacchia's
model for the non-symmetry in the diurnal bulge, This later version
minimizes the residuals between the observed and predicted exospheric

temperatures in comparison with over 1000 other models.

This modified Jacchia model determines the exospheric temperature
at 1000 km and uses an empirical equation to derive the resulting
temperature at any other altitude, This température is then used in
the solution to Eq.(B.D to yield the desired density: The development

proceeds as follows.

The night-time minimum temperature at 1000 km due to variations in
the 1ll-year solar cycle can be expressed as
T = °+ 3% F B.
where temperature is in degrees Kelvin. The fluctuation caused by the

27-day effect is accounted for by

F ) . (B.L4)

10.7 ~ " 10.7

T = T + 138 (F
(o] (e}
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To this expression the semiannual effect is added;

. . d-151, = } d-5
T = T + (0. + 0.
o ° (0.37 14 sin 21 -—3—65_) F10.7 sin hngég , (B.5)
where d is days from January 1. This temperature must be modified

to account for variation at other locations in the bulge. This is done

using the modification of Keating and Prior,

s . . 2.5 T@

zn = To[1+0.28 sin n_ + 0.28( cos §,~sin n@)cos 5 ] (B.6)
where
To = H - L45° + 12° sin (Ha + 45°) (-t T 7
Ha = hour angle of sun (deg) from the point,
= 1 -

n = zl(}\s }\@)I,
99 = %l(}\s + }\Q)l)
ks = declination of point (deg),
ke = sun's declination (deg).

This temperature is further modified to account for variation in the

geomagnetic activity by

T = T, + 1°0 a + 125°[1 - exp(-0.08 ap)] . (B.7)

o0

Combining Eqs. B.3 - B.7 yield the exospheric temperature at 1000 km and

beyond. To find the temperature at any altitude ha(in km), use

T = T, - (T, - 355°) expl-s (h, - 120)] (8.8)
where
s, = 0.0291 exp(-xi/E) , (B.9)
('rao - 800)
X = ~ ] B.].O
© 750 + 1.722 X 10 L‘(Too - 800)° ( )
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and

6378.165

_ ' (B.11)
V1 + 6.7385 X 10" 3 sin2)\

h = R
a

R is the radial distance to the point from the geocenter (km).

The temperature of Eq. B.8 can be used with Eq, B.1 to determine
the density at the point in question. Reference 70 contains a Table
with the resulting densities at altitudes of from 120 to 1000 km and
temperatures from 650° to 2100°K. Figure B.3 is a plot of these dens-

ities vs temperature with altitude as the parameter,

Rather than using Eq. B.1l or the Table for determining density,
it was found that adequate accuracy could be obtained by using poly-
nomials of the logarithm of density as a function of temperature, Third-
order polynomials were fitted to the tabular values from Ref. 70 at
altitudes of 200~1000 km in steps of 100 km, The resulting coefficients

are presented in Table B.1l.

After the temperature of the atmosphere at the point in question
is found using Eqs. B.3 -~ B.,1ll, the density from the polynomials at the

neighboring altitudes can be found using

2 3
T+ AT (B.12)

1np=A+ATm+A -

1 2 3

Then the density at the required altitude can be determined by simple

interpolation, i.e., by

(h—hLo)
P = exp|— 55 On.pHI -]n'pLO) +Inop ol (B.13)
where
hLO = next lower altitude having a polynomial fit,
= i i t ]
in pLO logarithm (to base e) of density at hLO and temperature Tm ’
1n DHI = logarithm of density at (hLo + 100 km) and temperature Tm'
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Fig, B.3, MEAN ATMOSPHERIC DENSITY AS A FUNCTION
OF TEMPERATURE FOR DIFFERENT ALTITUDES.
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TABLE B.1
POLYNOMIAL COEFFICIENTS USED TO YIELD ATMOSPHERIC DENSITY

AS A FUNCTION OF TEMPERATURE

- 2 3
Density p = exp[A1 + AT+ A3Tm + AuTm]
o in gm/cm3; Tm in °Kelvin.
Altitude| o 5"l |4 x 32 |a x10° |a x 10°
km 1 2 3 i
200 | -3.054057 | 0.291475 |-1.072323 | 0.00383k4
300 -3.817306 1.201897 | -6.345819 1,150696
400 -4, 194799 1.443336 | -7.040865 1.204388
500 -4 ,568213 1.752301 | -8,304390 1.396305
600 ~ | -4,907353 2.,030690 | -9.409241 1.559282
700 -5,089283 2.047103 | -8.980082 1.h2ho71
800 | -4.,968738 | 1.552572 | -5.621701 | 0.73357h
900 -4 ,595353 0.673299 | -0.262906 | -0.305830
1000 -4,250597 | -0,050244 3.746130 | -1,018655
For densities beyond 1000 km use
o = by0p €XP|(B, - 1000)(n o, o) ~1n pgoo)/1oo] X (B.14)
Similarly, for densities between 120 km and 200 km, use
P = Pl exp{(ha - 120)(n pypy - In 0120)/8O] . (B.15)

Here, is fixed at 2,461 X 10—11

gm/cm3.

ry 3 . b )
is a function of Tm ut p120

P200
Determining atmospheric density by the above procedure yields
values with better than three-decimal place accuracy (as compared to the
Table values) which is quite adequate when used for determining satellite

disturbance torques.
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As an indication of the change in atmospheric density as a function
of the orbital position of a satellite, Figs. B.4 and B.5\are presented.
Figure B.4 shows density variation in a 700 km polar, circular orbit with
the 10.7 cm solar flux average set at values of 100, 200, and 300.

Figure B.5 is a plot of density vs angular position of a resonating orbit
with period 1/15 the rotational period of the earth showing the effect
of varying eccentricity. In both figures, the starting point is near

the minimum density point of the diurnal bulge.

|°-l5

™ 200

lo-ls

DENSITY (gm/cm3)

10-17 | | | | | 1 |
) 50 100 150 200 250 300 350

TRUE ANOMOLY (deg)

FIG. B.4. ATMOSPHERIC DENSITY VARIATIONS OF A 700 KM
CIRCULAR ORBIT WITH DIFFERENT 10,7 CM SOLAR
FLUX AVERAGES.
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FIG. B.5. VARIATIONS IN ATMOSPHERIC DENSITY AS

A FUNCTION OF THE ANGULAR POSITION OF

A RESONANT ORBIT WITH PERIOD 1/15 THAT

OF ROTATIONAL PERIOD OF THE EARTH,

a = 6840 km, i = 45°, wp=0°. N = 180°,
Date = March 21, F10'7=F10.7=300.
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APPENDIX C

RADIATION PRESSURE MODEL FOR EARTH ORBITS

In the following section, analytical expressions are developed for
the magnitude and direction of external radiation source vectors which
cause attitude disturbances on earth-orbiting satellites. These sources
include direct solar radiation, solar radiation reflected by the earth,
and direct radiation emitted by the earth, Satellite-emitted radiation

is not discussed here.

It must be noted that only direct solar radiation can be truly
regarded as a vector (coming from the sun). The radiation reflected
from and emitted by the earth is diffuse; its exact effect must be
expressed in- complicated integral form and can only be evaluated by
computer techniques. It is possible for a cylindrically-shaped satel-
lite to have every element of its surface reached by some portion

of the earth-emitted radiation.

It is not the purpose of this analysis to produce exact expressions
for the effect of the total radiation pressure force striking the satel-
lite's surface. However, an attempt is made to present a reasonable
approximation of the total effect so that the approximate disturbances
can be expressed analytically or in a form which allows rapid computer
determination. For ‘this reason, it is assumed that the radiation from
the earth can be adequatel& expressed as a vector pointing in the aver-
age direction of each incoming flux element to a point at the satellite's
location., The vector magnitude equals the magnitude of the power input
to a flat plate normal to the vector. As a result of this vector repre-
sentation, the same technique can be used for obtaining the resulting

radiation pressure forces and torques for all radiation sources.

DIRECT SOLAR RADIATION PRESSURE

The flux of radiant energy crossing unit area in unit time is

S = m¢C (C.l)
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where m is the mass of radiant energy and cz is the speed of light,
r

The momentum flux is

mrcz = Sr/cz ° (Caz)

The sun's radiation disappears when the satellite is in the earth's
shadow, This occurs when cos_l(ﬁee R) > /2 4+ cos_l(ae/R) where ﬁ@
and R are unit vectors pointing from the geocenter to the sun and
satellite respectively, According to Holl [Ref, 73], Sr varies between
0,1351 and 0,1397 Watts/cm2 near the earth depending on the earth's
position in its orbit, Thus, with c, = 299,850 km/sec.,, the solar

£
-5 -
radiation input force ranges between 4,50 x 10 and 4,66 X 10 5 dyne/cmz.

EARTH EMITTED RADIATION PRESSURE

Assume the earth can be considered as a black body radiating uni-
formly at 250°K in a diffuse manner, The emitted power in any direction
varies as the cosine of the angle between the given direction and the
normal to the emitting element, Thus, the vector direction of this
radiation source can be assumed to lie along the radius vector to the

satellite, The general emittance is represented by the quantity Ae where

4
Aee = O'SbT , (C.3)

T is the absolute temperature of the black body, and Gsb is the
Stefan-Boltzmann constant, With the grey-body emissivity of the earth
denoted by ¢, the magnitude'of the power input to the satellite is
Aee(ae/R)2 with pressure Aee aez/(csz). For Gsb = 5,67 X 10~12
Watts/cm? (deg K)4 and T = 250°, A = 0.0226 Watts/cmz. The resulting
pressure on a flat plate normal to the radiation vector with ¢ =1

is 7.53 X 1076 (ae/R)2 dyne/cmz, A general analysis of power input to
a flat plate at an arbitrary angle to the earth-satellite radius vector

can be found in Cunningham [Ref, 74],

EARTH REFLECTED RADIATION PRESSURE

The problem of determining the magnitude and direction of the solar

radiation reflected from the earth and its atmosphere is compounded by
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the fact that regions of the earth in the shadow of the sun contribute
no radiation, 1In Ref, 75, Flandro indicated that a simplified model of
the reflected radiant flux can be represented by a vector 33 such that
its magnitude represents the equivalent flux at a given position rela~
tive to the earth, The vector's direction corresponds to the mean flux

and is not usually in the R direction, This model is employed here,

Assume that the the albedo T' of the earth is constant, that sur-
face temperature adjustments occur rapidly, and that reflection is dif-~

fuse, Referring te Fig. C.1, define

fa =
R - unit vector in direction of sun,
o

=34
§

radius vector from geocenter, a

unit vector forming
1,2 right-hand system
where

8y = ﬁ@XR/(R sin @),
Q- co§4~(ﬁ®-§/lﬁl),

n - outward normal unit
vector from dA,

dA - incremental area of
illuminated surface,

vector from dA
to vehicle,

=Y
!

"1/\ A

A~ cos (Re-n),

o - cos_l(ﬁ-zo/lﬂ;|),

P - angle from center
n to edge of illumi- FIG, C.1 GEOMETRY OF THE
nated circle, SUN'S RADIATION
REFLECTED BY THE EARTH,

The reflected flux per unit area is

2 & 7
. I‘Srae sin 27\n cos en ° .
— = !
dD = dxnd$n 03 dknd@n y (C.4)

3
Z“Czlb

215



where

. - ~ . s ”~
= - g -
L (R sin (¢ e sin \_ cos @ )e1 (ae sin )\ sin (pn)e2

(C.5)
+ (R cos oA - ae cos %n) R0 O

2 1
= - i ] El
L, R[1 +(ae/R) 2(ae/R)(s1n a cos @ sin xn + cos q_ cos xn)] , (C.6)
cos Qn = R[ sin An cos @n(51n a@ —(ae/R)51n Rn cos ¢n)
(c.7
2 2
- R i i - .

(ae/ ) sin A, sin” @+ cos xnfcos o (ae/R)cos xn)]/Lo
The total vector ﬁB is found by integrating dﬁs over the illuminated
area seen by the spacecraft, Defining the angle Sn as

5 = cos T (a/R) .8)
n = a, , .
and
-1 . .

mL = cos {[(ae/R)— cos xn cos 051/51n %n sin a@}, (C.9)
one has the following integrals to evaluate depending on the vehicle's
position with respect to the sun vector.

Sn"'ae w Bn"‘a@ CPL
D, = 2 dxnfé’dcp+ axfadcp
3 ) o3 ™ B " 37
. (C.10a)
for 0o <& ,
Cxe’i'an 'fL
D. = 2 d\ C, d
D3 n 3 q)n
O~ Sn Y
(C.10b)
I
for ansaos-é-&n 5
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and

/2 %L
D3 = 2 dln c3 do (c.10¢)
Qe-8, O
T k1S
for 5 - 6n.$ o < 5t Sn .

For the case where R > /Z'ae one must also include the integral

/2

/(PL 8,0 1
D3 = 2 f ax_ 03 dp_ + f d ./‘c3 o (c.104)
8, 0 0 o}

for L.8 <o <58 .
2 n (] n

Integrals (C.10a-c) were integrated numerically using the expressions of
(C.4) to (C.9) for altitudes ranging from 300 to 1800 km and an albedo
T' = 0,4, The results are plotted in Fig. C.2 which shows the magnitude

> >

of 53 and its deviation away from the radius vector R. D3 lies in

>
the plane of ﬁ@ and R,

The magnitude of the reflected radiation flux can be represented
quite well empirically by
- -4
|53| = 5,40 x 10 2 exp(=3.0 x 10 ha) cos Qb Watts/cm2 ,
(C.11)

for Ob's 90° ,

>

e
Defining the angle between the radius vector R and D3 as Vn’

its magnitude is apprdximately

2.4
v, = fn(%/fn) rad, (C.12)

-4
where fn = 4.89 —ha(5.82 X 10 ") rad. 1In Eq. (C.11) and (C.12), ha
is the altitude in km, Dividing the expression in (C.11) by c£ yields

the resultant radiation pressure of
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Ra3 = 1.80 x 10 ° exp(-3.0 x 10 "h ) cos a_ dyne/cm”, (C.13)

It can be assumed that reflected radiation pressure is negligible for

> 90°,
a, 9

/
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APPENDIX D

THE CONSTRUCTION OF OBSERVERS FOR MULTIVARIABLE OUTPUT SYSTEMS

In this appendix, several theorems will be presented concerning
the construction of observers for multivariable output systems, This
material essentially comes from two recent publications [Refs. 76 and 77]
and is necessary for the development of the reduced-order observer uti-
lized in Chapter 4. The theorems which follow are stated without proof
because of the length involved and for which the reader is referred to
the indicated document location, Additional comments and procedures'
outlines are included where appropriate to give the information presented

necessary cohesiveness,

The state observers discussed are for linear constant systems which

can be described by the equations

x(t) = Fx(t) + Gu(t) ,
(p.1)
Y(t) = Hx(%t) ’
where
x(t) = n X1 state vector,
u(t) = r X 1 input vector,
y(t) = m X 1 output vector.

It is assumed that the system (F,H) is observable which implies that

T, . T2 T, I Lt
rank[H : FTHT: FF H :~-==:F H] = n.

Thus, it is possible td reconstruct x(t) from y(t) by means of adding

an observer or state estimator to the system,

The concept of cyclic matrices and subspaces is used extensively in

the theorems, Cyclicity can be defined as follows:

Definition D.1 - cyclicity [Ref. 76]. A subspace §, of R", the
n-dimensional Euclidean space, is cyclic relative to the n X n
matrix F if there exists an n-vector x such that the vectors
x, Fx, ---, FK=lx where k is such that these k vectors are
independent but that FEx is dependent on the preceding k vec-
tors, forms a basis for $Sp. §, formed in this way is called the

cyclic subspace generated by x relative to F. The matrix F
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is cyclic if R is cyclic relative to F. F 1is cyclic if and
only if it is similar to a Jordan matrix J in which no eigen-
value appears in more than one Jordan chain,f

Any system matrix F can always be broken into cyclic subsystems
‘governed by submatrices of F or a similar matrix, The usefulness of
the cyclicity property of a matrix comes from the following theorem:

Theorem D.1 - Output Observability Theorem [Ref. 76, pg 62].

If the system matrix F is cyclic, then there exists a nonsingular
transformation P, of the output vector such that F is observ-
able from every scalar component of the transformed output vector
y3(t) = Pyy(t). Almost any nonsingular m X m matrix P, assures
this property.l

Because of this property, almost any 1 X m row vector converts a
cyclic multivariable output system into an observable, single output sys-
tem, Obvious advantages to observer construction result from this

theorem,

Another useful result is

Theorem D.2 [Lemma 4, Ref, 76, pg 67], If F is similar to an
n xn Jordan matrix J, and k is the maximum number of Jordan
chains in which a given eigenvalue 7\ appears, then in order for
(F,H) to be observable, it is necessary that H have at least

k independent rows.§

Thus, the minimum number of outputs which an observable system must
have to maintain its observability is equal to the minimum number of

cyclic subspaces which the system governed by F can be broken into,

In Ref, 76, Singer shows that any observable multivariable system
can be transformed to a general canonical representatibn with state
transformation =z(t) = Tlx(t) and yl(t) = Pmy(t). This representation
has features which are useful to the observer development of Chapter 4, so

the procedure used to obtain the canonical form is now outlined.

1, Form the observability-type matrix Ml' The first ol + 1
rows are formed by taking the first row of H (called hl)

1
and forming the rows hl’ th, e tha . Here, 0l
1+1
is the smallest index such that tha + is linearly dependent

on the previous ol + 1 rows, The next 2 + 1 rows of

o2

M1 are hz, h2F, ses, h F where @2 is the smallest index

o2+1 2

such that th is linearly dependent upon the previous
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ol + 02 + 1 rows, This procedure is repeated until Ml’ of
the form

M h F (D.2)

has rank n, The index p possibly may not equal m, the number
of rows of H, Also, some intermediate row hi of H may not

contribute to Ml'

Reorder the outputs so that the first p outputs of the new
output vector y1 correspond in order to the p rows of H

used to form Ml’ i.e., form

yl(t) = Pmy(t) = Pme(t) , (D.3)

where Pm is a nonsingular matrix of zeros and ones which
accomplishes this reordering,

Form the new systems matrix F1 = MlFMl—l which can be shown
to have the form below. Here, @ represents a block of zeros,
and x represents an arbitrary element, Since this matrix

is quasi~lower-triangular, its characteristic equations is

the product of the characteristic equations of the p diagonal

blocks,
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4-

Form the A metrix by inspection from elements of F

1

$1,m

.

P1,0-1 b1

0 1 o
o 1 )
¢
Pro Prx Pig - - By
1 .
0
#
* x 0x X Byy By - 82,02
0
; ¢
x x X X ;X X x Bpoﬁpl . e Bpap_J
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(D.4)

as

(D.5)



5., Use the A nmatrix to transform F1

into the observable

canonical form F, = AFlA‘l = am M ~1a,
B1,00 0
Pr,a1-1 0 1
8
P1o 0
-
5%a2 1 .i
B2,02-1 o0
[
x x . B20 0
Bp,(xp !
Bp'ap_l 0
# ¢
' . .
x x - x x o B Y

po

(D.6)

This matrix has subblocks along the diagonal which are those

of Fl

axis.

transposed about the perpendicular-to-the-diagonal

6. An observer for this new system can be formed with arbitrary

dynamics by forming

Z(t)

y(t)

1

Fzﬁ(t) + K£Pm§<t) - ¥(B)] + Gu(t)

sz(t)
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Here,

5 0l

k),01-1
. ) ¢

k0
2,02 (D.8)
¢ k2 ,a2_,1 & L] ¢ ﬂ
K t—
k20

G =T G = AMlG, and H 1

2 1 2
system, then, the observer is

= PmHT In terms of the original

-1
1

-1

Rty = (1, TRPIR(E) + T, KR y(£). + Gu(t) .0 (D.9)

-1

This construction procedure is straightforward and only M1

cannot be formulated by inspection,

In Ref, 77, Gopinath shows that if the system is cyclic, then
an observer can be constructed in a systematic way formalized as
Theorem D,3 [Modification of Theorem 5,1, Ref. 77, pg 79].

Let (¥,H) be completely observable and F cyclic, Then the set
of equations
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Y = a + tr(HL)

1 1
Y = a_, + a tr(HL) + tr HFL
2 2 1 (D.10)
2
Y3 = a3 + aztr(HL) + astr(HFL) + tr(HF'L)
Y = a ' tr ar L
n S Byt e e + tr( L)

(subject to the condition that L be of rénk one) has a unique
solution for I almost surely, Here, the system has the char-
acteristic equation

n

N .
s© 4 :z; aisn 2 oo, (D.11)
1=

and the desired observer characteristic equation is

=]

(0.12)

Note that in Eq. (D.10), if L = bcT (where b and ¢ are n X 1 and

m X 1 column matrices ),

Also,

tr@rlL) = trclErdp) = clurdb

note that if the definitions

1 0 o . e e
al o . . .
A é a a « e e
2 1 !
8-1 2n-2 a1 1
. -
LT
To ™ %
A °
K = . H
Y - a
n n




and

ne

b = M ATK (D.13)

-1 . . .
whenever Ml exists, But this is 8 special form of the observer

obtained by canonical forms, If one sets P = ¢’ which is valid by

Theorem D,1, then the observer for the cyclic system is

$t) FX + L[y(t)-HR(t)] + Gu(t) ,

(D.14)

-1 -1 T . -1 -
= (F - M AR IR(E) + M A Kely(t) + Gu(t) ,

1

1

which is precisely Eq. (D.9). The matrix M1 has an inverse almost

always with the reandom selection of elements of cT .

Reference 77 used the following theorem to show that noncyclic

systems could usually be made cyclic,

Theorem D.4 [Theorem 5.2, Ref, 77, pg 841. Given a completely
controllable and completely observable system which is not cyclic,
the system (F-GK,G,H) is cyclic almost always, when the elements
of K are picked from a distribution in which no finite mass is
concentrated on a surface of dimension less than n.|

This method does not work for a noncontrollable system,

Reference 77 goes on to develop an ingenious method for the con-
struction of reduced-order observers, If (F,H) is observable and H
is m x n, then only an (n—m)th—order observer needs to be constructed
because the output y = Hx (where it is assumed that H has m independ-
ent rows) provides m of the n states directly, It is assumed that

H is of the form
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which can always be mechanized, and that the F, G, and state matrices

are partitioned as

x1 m
X = ——— ’
x2 n-m
F : F m
11 : 12
F = |-—-—=-- r ----- y
le i F22 n-m
G11 m
G = |=——- .
G21 n~m
-

The reduced-order observer (which is referred to here as the Gopinath
reduced-order observer), is constructed from a procedure which is

presented in three theorems as follows:

Theorem D.5 [Theorem 5.3, Ref, 77, pg 88]. 1If (H,F) is completely
observable, the pair (Flzt F22) is completely observable. |}

Theorem D,6 [Theorem 5.4, Ref, 77, pg 90]. Let one system be
defined as

}‘{1 = Fxl + Gu s

and the other as
X, = sz + FGu ,

and let the eigenvalues of F have negative real parts, Then

xl(t) = xz(t) + Gu(t) as t 5= .|

227



Theorem D.7 [ Theorem 5.5, Ref. 77, pg 91]. Given two observers
of the form

X =

2 - LF) )%, + G

Foo o1t t Fgr¥y + L%
and

5 = (F

9 —LFlz)x

+ (F21—LF + F L-LFlzL)x1 + (G21—L

11 22 u,

G11
then if all eigenvalues of Fgg9 - LFjo have negative real parts,
X9 — %9 + Lx; as fast as exp(Fgg - LFj9)t. Thus, the problem of
designing an observer of dimension (n - m) is reduced to design-
ing one for the system

22 2

x2 = F22x2 + F21x1 + G21u .

It can be constructed as indicated in Fig. D.1., Here, ﬁz is
the estimate of the unknown x, . |

X|—> - X
F2| —LF“ L
i + N ;2 + N A
- +
Fa2—LFp [=

FIG, D.l, SCHEMATIC OF THE GOPINATH REDUCED-
ORDER OBSERVER.
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